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Abstract: The main scientific result of this paper is the demonstration of the fact that tidal effects
induced by the Moon affect the Schumann resonance amplitudes measured at magnetometers located
at different geographical locations of the Global Coherence Monitoring System. Each magnetometer is
paired with the closest monitoring station of the global tidal wave measurement network. This paper
introduces the Schumann Resonance Complexity Index (SRCI), computed by using the calibrated
H-rank algorithm on the local magnetic field data recorded by each magnetometer of the Global
Coherence Monitoring System. Tidal wave data recorded at each monitoring station are also used to
compute the Tidal Wave Complexity Index (TWCI). Eliminating diel cycles from the SRCI data yields
significant statistical correlations between the SRCI and TWCI data, proving the hypothesis of tidal
effects on the global network of magnetometers.

Keywords: Schumann resonance; magnetic field; Tidal Wave Complexity Index; correlation

1. Introduction

In 1949, J. Bartels introduced the planetary Kp index, derived from three-hourly K
indices specific to observatories [1]. This planetary geomagnetic K index assesses geo-
magnetic activity within three-hourly UTC (Coordinated Universal Time) intervals on a
quasi-logarithmic scale from 0 to 9. This geomagnetic Kp index quantifies disturbances
in the Earth’s magnetic field caused by solar activity [2]. The Kp index is derived from
observations of magnetic field variations at specific geomagnetic observatories around the
world [1]. These observations are used to calculate a single global index that represents
the overall level of geomagnetic activity. The Kp index is particularly useful for assessing
the potential impact of space weather events, such as solar flares and coronal mass ejec-
tions, on Earth’s magnetosphere. Monitoring the Kp index is important for space weather
forecasting and for assessing the potential impacts on various technological systems on
Earth. The Kp index is then derived by combining the individual K-values from different
observatories. The overall Kp index is a global measure of geomagnetic activity during a
specific three-hour period.

Every day the 24 h Kp index is calculated by summing the Kp values over eight
consecutive 3 h intervals. The Kp index is calculated on a semi-logarithmic scale, while
its counterpart is calculated on a linear scale and is known as the Ap index. The daily
sum of the Ap index is calculated by summing the eight three-hour Ap index values. This
helps provide a smoother representation of the overall geomagnetic activity for a full
day [1]. It provides a daily measure of geomagnetic activity, and its values are related to
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the disturbance storm time (Dst) index, which measures the globally averaged strength
of the Earth’s geomagnetic field disturbance. The Dst index was proposed by M. Sugiura
in 1964 [3] to measure the magnitude of the current that produces the axially symmetric
disturbance field. It is derived from geomagnetic field variations in the H component
measured at four low-latitude stations. The development of the Dst index was a significant
step in understanding and monitoring space weather, as it allowed scientists to assess the
impact of solar activity on the Earth’s magnetosphere. The Dst index is widely used in
space weather research and forecasting to characterize the severity of geomagnetic storms.

In the realm of space physics and geomagnetism, numerous indices such as Kp, Ap,
and Dst are employed to assess and quantify the dynamic nature of the Earth’s magneto-
sphere in response to solar activity. However, when delving into the intricacies of local
magnetic field variations, particularly those influenced by lunar waves, a more refined
approach is necessary. In this context, the focus shifts from general indices averaged over
the day to the development of a distinct index for each hour and the specific geographic lo-
cations where magnetometers are deployed. This approach aims to capture the complexity
of the local magnetic field in real-time, allowing for a more detailed understanding of the
interplay between lunar waves and geomagnetic activity at specific locations and temporal
intervals. Fine-grained indices of this nature enhance our understanding of the intricate
dynamics within the Earth’s magnetosphere and its interactions with celestial bodies such
as the Moon.

Understanding the Earth’s magnetic field requires tracing its evolution over time and
analyzing spatial variations. In [4], the field history of the Earth is determined through the
current polarization of crustal material, specifically clay-like sediments in unconsolidated
water environments, offering a simple form of polarization for examination. Ref. [5] en-
hances our understanding of the Earth system by investigating its internal dynamics and its
impact on geospace, employing high-precision measurements of magnetic field characteris-
tics, coupled with navigation, accelerometer, and electric field data. Measurement of local
magnetic fields is crucial for diverse applications, including detecting anomalies in Earth’s
main field, locating buried objects in oil and mineral exploration, and monitoring space
weather. Magnetic observatories provide essential data for statistical studies on magnetic
storms, tracking magnetic pole motions, and understanding the structure and dynamics
of the Earth. In physics and astronomy, local magnetic field measurements help to study
fundamental particles and their behavior in different environments, such as in plasma and
the magnetic fields of stars [5–9].

Recent studies, such as [10], focus on understanding key aspects of Earth’s geomag-
netic field, including the decay of the dipole moment, changes in the South Atlantic
anomaly, and magnetic pole positions, all crucial for effective space weather prediction.
Other studies [11,12], highlight advances in modeling the magnetospheric magnetic field,
combining observational data with flexible models for a better understanding of Earth’s
magnetic environment dynamics. The significance of magnetic field measurements from
geosynchronous orbit is emphasized in [13], contributing to space weather monitoring
and enhancing our understanding of Earth’s magnetosphere and solar interactions. Fur-
thermore, Refs. [14,15] discuss the importance of understanding Earth’s geomagnetic field
and its response to external forces, highlighting the societal implications of space weather
events. Finally, the study in [16] employs the Space Weather Modeling Framework to simu-
late space weather events, demonstrating accurate reproduction of large-scale magnetic
field variations and predicting plasma temperature and density close to measured means.

The GCMS (Global Coherence Monitoring System) is a global network of magnetome-
ters measuring changes in the Earth’s magnetic field and monitoring Schumann resonances
in the Earth–ionosphere cavity. It helps to study the Earth’s magnetic field and ionosphere,
examining their response to solar activity and other influences [17]. The effects of the Moon
on Earth are mostly represented by tidal effects. Measurement of seawater height serves
multiple purposes across various scientific disciplines, from oceanography to meteorology.
It involves instant measurements contributing to the understanding and calculation of sea



Appl. Sci. 2024, 14, 3332 3 of 24

level changes, mean, lowest, and highest sea levels, tide amplitude, and phase. Various sen-
sors, including tide gauges, GNSS (Global Navigation Satellite System), and satellite radar
altimeters, contribute to global coverage and complement fixed point observations [18]. The
international organization The Global Sea Level Observing System (GLOSS), established in
1985, aims to provide standardized sea level data globally. GLOSS comprises around 300
sea level stations from 80 countries, observing large-scale sea level variations with global
implications [19].

The Moon’s influence on the Earth’s surface and tides are well known. However,
the influence of the Moon on changes in the upper layers of the magnetosphere is less
studied. Ref. [20] explores the impact of lunar tides on various Earth systems, including
the crust, oceans, atmosphere, and geomagnetic field. The research reveals new evidence of
lunar-tide-induced signals in the plasmasphere, an inner region of the magnetosphere filled
with cold plasma. By analyzing multi-satellite observations over four decades, the study
identifies distinct diurnal and monthly periodicities in the plasmasphere’s boundary lo-
cation, different from previously observed lunar tide effects. These findings highlight
the significance of lunar tidal effects in plasma-dominated regions, influencing the un-
derstanding of the interactions of the Moon, atmosphere, and magnetosphere system
through gravity and electromagnetic forces. The results may also have implications for
tidal interactions in celestial systems with two bodies.

The main objective of this paper is to provide a reliable statistical proof that the
influence of the Moon can also be observed in the Global Coherence Monitoring Network.
The paper is structured as follows. An overview of the different techniques used in this
study is described in Section 2. The algebraic complexity of the magnetic field data is
presented in Section 3. Section 4 presents the statistical results of the data. The algebraic
complexity of tidal effects is presented in Section 5. Conclusions follow in Section 6.

2. Preliminaries
2.1. The Global Monitoring Network and Local Magnetic Field Data

The Global Coherence Monitoring Network [21] comprises five magnetometers which
are continuously collecting data on Schumann resonance amplitudes at five locations
around the globe (the numbers of the stations denote latitude and longitude in degrees):
Baisiogala, Lithuania, Eastern Europe (55.638929, 23.722195); Boulder Creek, CA, USA
(37.4192, −122.057); Alberta, Northern Canada (53.364561, −113.41565), Hofuf, the eastern
region of Saudi Arabia (25.383333, 49.583333); and Northland, the north island of New
Zealand ( −38.526368, 175.675718). The distribution map of the five magnetometers is
shown in Figure S1. The magnetometer used in this study has two ANT4 magnetic
field detectors (Zonge Engineering Inc., Zonge International, 3322 E. Ft. Lowell Road,
Tucson, AZ 85716, USA) which are positioned in north–south and east–west orientations.
The signals are digitized with a 24-bit data acquisition system at an average rate of 130
Hz. Thus, it is a vector magnetometer. The spectral power is computed on the east–west
component. The same applies for each magnetometer. At each location, two magnetometers
are positioned in the north–south and east–west orientations to measure the time-varying
magnetic field. The magnetometers have a large bandwidth, yielding a flat response in the
range 0.01–300 Hz, but the measurement is performed (according to Nyquist’s theorem)
only for frequencies up to 65 Hz [21]. The Schumann resonance amplitude data are collected
by data-collecting equipment, time-stamped using the Global Positioning System, and sent
to a central server. The measurement procedure of the local Schumann resonance amplitude
data is explicitly explained in [21,22].
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2.2. The H-Rank as a Measure of Algebraic Complexity of a Time Series

The Hankel transform of a sequence of real numbers (xk)
+∞
k=1 yields a sequence (hk)

+∞
k=1,

where hk = det(Hk) and Hk is a kth -order Hankel matrix Equation (1):

Hk =


x1 x2 . . . xk
x2 x3 . . . x(k+1)
...

...
. . .

...
xk x(k+1) . . . x(2k−1)

. (1)

If there exists such m > 1 that hm ̸= 0, but hj = 0 for all j > m, then the sequence
(xk)

+∞
k=1 is an mth-order linear recurrence sequence (LRS) [23]. A straightforward compu-

tation of a sequence of determinants is evidently an impractical strategy for determining
the order of a linear recurrence sequence. Moreover, an additive would compromise such
an approach. For example, the detectable order of a linear recurrence sequence with ad-
ditive noise is infinite (it is not possible to reconstruct a mathematical model for random
noise) [24]. In other words, an alternative strategy should be employed to determine the
orders of real-world time series that are inevitably contaminated by external noise.

It is well known that the singular value decomposition (SVD) of the Hankel matrix
can efficiently determine the rank of the linear model that governs the evolution of a time
series [25]. The number of singular values of the Hankel matrix of a linear recurrence
sequence greater than zero coincides with the number of non-zero roots of the characteristic
polynomial of the linear recurrence. It appears that the SVD algorithm can also be used to
efficiently determine the orders of linear recurrences contaminated by noise [24].

The number of squared singular values of the Hankel matrix Hd greater than ε is
defined as the H-rank of a sequence (even if the sequence is not the LRS) [24]. The H-rank
algorithm can be tuned by choosing two essential parameters (the order of the Hankel
matrix d and the threshold ε). If the sequence is the LRS, d > m, and ε is set to the
machine epsilon, the H-rank is equal to the order of the linear recurrence [24]. However,
a proper selection of d and ε helps to assess the algebraic complexity of any time series (not
necessarily a linear recurrence) [24].

The SVD decomposition of the matrix Hk yields k squared real singular values σ2
l ;

l = 1, 2, . . . , k, sorted in descending order. A proper selection of ε helps to determine the
ε-H- pseudospectrum of Hk [24]; the calculation of the number of singular values greater
than ε yields the H-rank of the sequence [24]; see Equation (2):

H-rank(Hk) =
k

∑
l=1

I(σ2
l ≥ ε) (2)

where I(S) is the indicator function (a Boolean to integer conversion function), which is
equal to one if the statement S is true, and equal to zero otherwise.

Example 1. Let us consider a period-3 sequence (xk)
+∞
k=1 = 1, 4, 5, 1, 4, 5, . . . . The Hankel

transform reads as Equation (3):

h1 = x1 = 1; h2 =

∣∣∣∣1 4
4 5

∣∣∣∣ = −11; h3 =

∣∣∣∣∣∣
1 4 5
4 5 1
5 1 4

∣∣∣∣∣∣ = −130; h4 =

∣∣∣∣∣∣∣∣
1 4 5 1
4 5 1 4
5 1 4 5
1 4 5 1

∣∣∣∣∣∣∣∣ = 0. (3)

All higher-order determinants are equal to zero: hk = 0, k = 4, 5, . . . . Therefore, the order of
this period-3 sequence is 3.

The same result can be determined using the SVD algorithm. Set d = 5. Then, the squared
singular values of H5 are (σ2

k )
5
k=1 = (17.0254, 6.063, 5.0376, 0, 0). Thus, the H-rank of the period-3

sequence is also equal to 3.
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Now, let us consider that this period-3 sequence is perturbed by the additive noise (choose a
Gaussian distribution with zero mean and a standard deviation equal to one). The first nine elements
of the perturbed period-3 sequence read: (xk)

9
k=1 = (0.9728, 3.9646, 5.0033,

1.0023, 3.9021, 5.1098, 0.9176, 3.8666, 4.9738). The squared singular values of the perturbed (but
symmetric) Hankel matrix H5 read: (σ2

k )
5
k=1 = (16.8989, 6.0958, 5.1465, 0.1249, 0.055). Setting

ε = 0.13 helps to identify three singular values greater than ε. Thus, the H-rank of the perturbed
sequence is equal to three.

A number of well-established complexity measures can be used to assess the complexity of a
time series, including entropy measures, fractal dimensions, Lyapunov exponents, spectral analysis,
and permutation entropy measures. However, we will use the H-rank as a measure of the algebraic
complexity of a time series due to the the ability of its calibration, in terms of the sensitivity and
specificity, to a given time series. These aspects of the H-rank algorithm are discussed in detail in the
next section.

3. Algebraic Complexity of the Schumann Resonance Amplitude Data
3.1. Calibration of the H-Rank Algorithm for a Synthetic Chaotic Time Series

As mentioned previously, the H-rank algorithm can be used successfully not only to
detect the order of a linear recurrence, but also to evaluate the algebraic complexity of any
time series [24,26]. The main purpose of this article is the analysis of Schumann resonance
amplitudes measured at different geographical locations and the mathematical study of the
correlations between different magnetometers. As shown in example 1, a proper selection
of ε is crucial for a proper application of the H-rank algorithm. Therefore, before starting
with the magnetic field data, we first demonstrate the applicability of the H-rank algorithm
for a synthetic chaotic time series. Furthermore, we employ the model of the master–slave
coupled (MSC) logistic maps [27] to show how a proper calibration of the parameters of
the H-rank algorithm can help detect the algebraic complexity of the MSC model. In other
words, we consider a system where the degree of synchronization between two subsystems
(the master and the slave) can be controlled and show that the H-rank algorithm is able to
efficiently determine that degree of synchronization.

Synchronization of chaotic systems is a vibrant area of research in non-linear anal-
ysis [28]. The first observations of synchronization date back to 1665, when Huygens
observed anti-phase coupling in two identical pendulum clocks [29]. It took several cen-
turies before synchronization of chaos became an active area of research in theory [30],
as well as in a variety of applications such as secure communication systems [31–33], cou-
pled lasers [34,35], neural networks [36], chemical oscillators [37], and a grid of power
generators [38].

Different types of chaos synchronization can be observed in coupled chaotic systems:
identical (also known as complete) synchronization [39], generalized synchronization [40],
phase synchronization [41], amplitude envelope synchronization [42], lag synchroniza-
tion [43], and anticipated synchronization [44]. Typically, generalized synchronization is
observed for unidirectional coupling, when the first (driving) system forces or pulls the
second (driven) one, but there is no back action. Such a situation is often called MSC
coupling. The onset of generalized synchronization can be interpreted as the suppression of
the dynamics of the driven system by the driving one, so that the ’slave’ passively follows
its ’master’.

The governing equations for the MSC logistic maps are shown in Equation (4) [27]:

Xk+1 = rX · Xk · (1 − Xk),

Yk+1 = rY · qk · (1 − qk),

qk = ∆ · Xk + (1 − ∆) · Yk; k = 0, 1, 2 . . .

(4)

where x and y represent the master and the slave accordingly, and the parameter ∆ defines
the magnitude of the MSC coupling.
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We choose the parameter of the logistic map rx = 3.9 for the master and ry = 3.89 for
the slave, ensuring that both logistic maps operate in the chaotic mode [45]. The initial
conditions x0 and y0 are set accordingly to 0.1 and 0.2. Thus, the two logistic maps generate
completely different time series when ∆ = 0 (indicating that the two logistic maps are
then uncoupled).

The increasing value of ∆ results in MSC synchronization between the two logistic
maps. The time series (xk) and (yk) are completely different at ∆ = 0.1 (Figure 1a). The
150 singular values of the Hankel matrix constructed from the time series (xk − yk) are
shown in Figure 1b (with the parameter d set to 150). It can be seen that the value of the
highest singular value is (σ2

k ) = 14.6058 (Figure 1b).

Figure 1. MSC logistic map at ∆ = 0.1 in panel (a) and σ2 in panel (b).

MSC synchronization between the two logistic maps at higher ∆ values is represented
in Figure S2.

A further increase in ∆ results in an almost identical synchronization of the MSC
logistic maps (Figure 2). However, it should be observed that the differences (xk − yk) are
not equal to zero (Figure 2a). If one rescaled the representation of the (xk − yk) time series,
small intermittent bursts could still be observed. The values of the highest singular values
are: (σ2

k ) = 0.10644 at ∆ = 0.5 (Figure 2b).

Figure 2. MSC logistic map at ∆ = 0.5 in panel (a) and σ2 in panel (b).

It is clear that ∆ can be used as a control parameter for the regulation of the complexity
of the time series (xk − yk). Now, it is time to demonstrate that the H-rank algorithm can
also be used to efficiently determine the algebraic complexity of the time series (xk − yk).
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The largest singular values of the Hankel matrix generated from (xk − yk) (at d = 150) for
different values of the coupling parameter ∆ are depicted in Table 1.

Consider that the value of ε is set to zero. Then, the number of singular values greater
than ε is always equal to 150 regardless of ∆ (Table 1). Analogously, the number of singular
values greater than ε is always equal to zero regardless of ∆ if ε is set to 15 (Table 1). In other
words, the H-rank algorithm must be calibrated with respect to ε. It can be seen that
ε = 0.15 results in a rather good representation of the algebraic complexity of the time
series (xk − yk) (Table 1).

Table 1. Calibration of ε for the H-rank algorithm applied to the time series generated by the MSC
logistic maps.

∆ = 0.1 ∆ = 0.3 ∆ = 0.4 ∆ = 0.425 ∆ = 0.45 ∆ = 0.5

σ2 14.6058 7.6784 3.4373 0.2531 0.1767 0.1064

H-rank

ε = 0 150 150 150 150 150 150

ε = 0.1 149 147 136 96 39 2

ε = 0.125 149 146 133 84 16 0

ε = 0.15 147 146 130 77 2 0

ε = 0.2 147 144 125 62 0 0

ε = 0.3 145 142 113 29 0 0

ε = 0.4 144 139 104 14 0 0

ε = 0.5 140 135 96 8 0 0

ε = 1 126 119 65 0 0 0

ε = 15 0 0 0 0 0 0

The MSC logistic map model not only allows us to generate a chaotic time series
(xk − yk), but also to control its complexity. Computational experiments in this subsection
prove that proper calibration of the H-rank algorithm makes it an effective tool for the
assessment of algebraic complexity.

3.2. The Definition of the Complexity Index Based on H-Ranks

As mentioned previously, the main objective of this paper is to study the complexity
of Schumann resonance amplitudes (SRAs) measured at different magnetometers located
throughout the world and to assess possible correlations between those magnetometers.
The power of the SRA is measured once per second in different frequency ranges. Since
the SRA measurement process is continuous, it would be feasible to introduce an index
representing the slow dynamics of the SRA. A natural approach would be to choose an
index that represents the variation in the SRA over a time period of 1 h. Thus, the slow
dynamics of the SRA would be represented by 24 values of the complexity index during
each day.

We will illustrate the algorithm for the construction of the complexity index based
on H-ranks using the synthetic data generated by the MSC logistic maps. Let us assume
that a single iteration of the MSC logistic maps corresponds to one second. Therefore,
the complexity index based on H-ranks must be computed from 60 × 60 iterations. Note
that all computations of H-ranks in the previous section were performed using the Hankel
matrix, whose dimension d is fixed to 150. In other words, the length of the observation
window required to fill the 150-dimensional Hankel matrix is 300 time-forward iterations
of MSC logistic maps. It is clearly not feasible to construct a single Hankel matrix of
dimensions 1800 × 1800 (2 · 1800 = 3600) .
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Instead, the size of the Hankel matrix is kept at 150 × 150, eliminating the need to
repeat the calibration procedure of the threshold parameter ε. All further computations of
H-ranks are performed in overlapping observation windows (300 iterations) until the last
iteration is reached in the current hour (iteration number 3600). Note that the calibration of
ε is performed once for the first 300 iterations.

Let us denote the H-rank computed in the first observation window as Hr1. Then,
the last H-rank computed in the current hour is reached at the last iteration in this hour
(iteration number 3600) (Figure 3). Afterward, the complexity index characterizing the
algebraic complexity of the investigated time series is computed as the arithmetic average
of all computed H-ranks in the current hour.

Figure 3. The schematic explanation of the H-rank computations for the time series.

The process is continued without any gaps for the next hour (next 3600 iterations).
Note that the threshold ε is not recalibrated for the next hour (it is assumed that the
process is stationary). Such a computation of complexity indices can be interpreted as
an information reduction algorithm (each consecutive hour is represented by a single
number). Note that H-ranks are measured in natural numbers, but the complexity index
is represented as a real number due to the averaging operation. To make the calculation
of the complexity index independent of the parameter d, the results are normalized in the
range from 0% to 100% (0% stands for the H-rank equal to 0; 100% stands for the H-rank
equal to d).

Twenty-four complexity indices are calculated for the logistic MSC maps (the differ-
ence time series xk − yk) and are depicted in Figure 4. The coupling parameter ∆ is set
to 0.1 in panel (a); 0.3 in panel (b); 0.4 in panel (c); 0.425 in panel (d); 0.45 in panel (e);
and 0.5 in panel (f). It can be observed that the introduced complexity indices, based on
the computation of H-ranks, are able to measure the algebraic complexity of a chaotic
time series represented by the MSC logistic maps. The numerical values of the complexity
index decrease when the differences between xk and yk decrease (Figure 4). Moreover,
the fluctuation of the numerical values of the complexity indices at the fixed parameter
∆ represent the complex process of intermittent bursting, which occurs when the slave
logistic map is forced to follow the chaotic dynamics of the master logistic map.

3.3. The Calibration of the H-Rank Algorithm for the SRA Data

The spectral power of the SRA is calculated according to the algorithm detailed in [21].
The algorithm involves computing the spectrogram of the SRA for consecutive one-second
time intervals, determining the spectrum amplitude, and summing the spectral power
values in three different frequency ranges: 0 to 1 Hz (ultralow-frequency range), 0 to 3.5 Hz
(low-frequency range), and 3.5 to 36 Hz (medium-frequency range) [21,23,46].

The calibration of the H-rank algorithm (selection of the appropriate value ε) for the
MSC logistic maps model is performed by regulating the complexity of the time series
representing the difference between the logistic maps of master and slave. However,
the measured SRA data cannot be regulated; these are the data streams recorded by the
network of magnetometers. Therefore, a new strategy is required for proper calibration of
the H-rank algorithm.

Let us consider the SRA spectral power time series recorded by the Californian mag-
netometer in the frequency range of 3.5–36 Hz during the 28 February 2015. The length of
the observation window used to construct the Hankel matrix is set to d = 300 data points
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(seconds). The raw signal normalized to the interval [0, 1] is depicted in Figure 5a; the first
300 s of the raw signal are shown in Figure 5b.

Setting the value of the threshold parameter ε to 0.4, H-ranks are computed in overlap-
ping observation windows throughout the whole day of 28 February 2015; the results are
depicted in Figure 6a. Note that the H-ranks are normalized to the interval between 0%
(representing the minimal H-rank equal to 0) and 100% (representing the maximal H-rank
equal to 150).

(a) (b)

(c) (d)

(e) (f)

Figure 4. Twenty-four complexity indices computed for the MSC logistic maps (the difference time
series xk − yk). The parameters of the H-rank algorithm are set to d = 150 and ε = 0.15. The coupling
parameter ∆ is set to 0.1 in panel (a); 0.3 in panel (b); 0.4 in panel (c); 0.425 in panel (d); 0.45 in panel
(e); and 0.5 in panel (f). The left vertical axis and the light gray line stand for the time series xk − yk.
The red vertical axis and the thin red line stand for the H-ranks computed in overlapping observation
windows. Blue bars stand for the complexity indices (the magnitude of the complexity indices is
measured by the same scale used to measure unsmoothed H-ranks).
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Next, complexity indices are computed for each hour of 28 February 2015, and we
name those complexity indices Schumann Resonance Complexity Indices (SRCIs). Twenty-
four SRCI are shown in Figure 6b. Note that the time scale (hours) in Figure 6 represents
GMT (Greenwich Mean Time). The variation in SRCI represents the time of the day well. It
is well known that the magnetic field spectral power is higher in the daytime than in the
nighttime [46]. In fact, the smallest SRCI at 11:00 GMT (Figure 6b) corresponds to 03:00 PST
(Pacific Standard Time).

The black horizontal line in Figure 6b corresponds to the arithmetic average of 24 SRCI,
calculated for the data collected by the magnetometer located in California during 28
February 2015, in the frequency range 3.5–36 Hz.

Computational experiments are repeated for the same data set (California, 28 February
2015, 3.5–36 Hz) with ε = 0.7 (Figure 7). The variation in SRCI in Figure 7b is similar to
Figure 6b. However, the arithmetic average of SRCI in Figure 7b is considerably lower
compared to the average calculated at ε = 0.4 (Figure 6b).

Figure 5. The variation in the magnetic field spectral power recorded by the magnetometer at
California on the 28 February 2015 (over a 24 h period) is depicted in panel (a), while panel (b) shows
the first 300 s of this recording.

(a) (b)

Figure 6. The H-rank of the magnetic field spectral power and the Schumann Resonance Complexity
Index (SRCI), computed with ε = 0.4 for the magnetometer located in California on 28 February 2015,
in the frequency range 3.5–36 Hz in panel (a). The average SRCI is represented by the solid black
horizontal line, equal to 60.91% in panel (b).

Now, the strategy for the calibration of the threshold parameter ε is straightforward.
The aim is to choose a value of ε such that the average SRCI is exactly equal to 50%.
This requirement helps to guarantee the widest dynamical range of the distribution of
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individual SRCIs. It can be seen in Figure 8 that this condition is satisfied at ε = 0.55. Note
that the calibration of ε is a computationally expensive exercise. The average SRCI must be
computed at different values of ε until the optimal ε is found with the required resolution
(the horizontal red line in Figure 8 stands exactly at 50%).

A similar calibration of the H-rank algorithm (the selection of ε) must be performed
for all other magnetometers at different locations around the world. Such a necessity is
predetermined first of all by the different geographical coordinates of the magnetometer
sites (it is well known that the spectral power of the local magnetic field also depends
on the time of year [21]). Separate calibrations are also performed for different frequency
ranges on the same magnetometer. The date of 28 February 2015 is consistently used as
the observation window for the calibration procedure for all geographical locations and all
frequency ranges. The calibrated values for ε are shown in Table 2. Further computations
were performed using not the separate calibrated ε values for each different location and
different frequency range, but the averaged value of ε of all locations in the same frequency
range. This was to be able to compare the SRCI between different locations at the specified
frequency range.

(a) (b)

Figure 7. The H-rank of the magnetic field spectral power and the Schumann Resonance Complexity
Index (SRCI), computed with ε = 0.7 for the magnetometer located in California on 28 February 2015,
in the frequency range 3.5–36 Hz in panel (a). The average SRCI is represented by the solid black
horizontal line, equal to 37.43% in panel (b).

Figure 8. The calibration of the ε value for the Schumann Resonance Complexity Index (SRCI).
Schumann resonance time series recorded by the Californian magnetometer in the frequency range
3.5–36 Hz on 28 February 2015.
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Table 2. The calibrated ε values for each location in different frequency ranges.

3.5 –36 Hz 0 –3.5 Hz 0 –1 Hz

California 0.55 1.1 1.75

Canada 0.575 0.95 1.575

Lithuania 0.675 1.49 2.65

New Zealand 0.865 1.75 2.05

Saudi Arabia 0.64 1.58 2.1

Average 0.661 1.374 2.025

4. Correlations between Different Magnetometers
4.1. The Elimination of the Circadian Rhythm

It is well known that the SRA varies throughout the day [21]. There are records show-
ing almost clock-like accuracy of the diurnal SRA changes [47]. Therefore, the elimination
of the diurnal SRA changes is performed by computing moving averages of SRCI indices
and using a length of averaging window equal to 24 h. The investigation period used in
this paper spans from 28 February 2015 to 11 March 2015. As mentioned previously, the cal-
ibration (the selection of ε) is based on data collected during 28 February 2015. In other
words, the values of ε are fixed for the entire investigation period for each individual site,
for each specific frequency range.

It is interesting to observe the variation in the local magnetic field measured at different
magnetometers with the diel cycle (the 24 h period) eliminated. This is performed by
arithmetic averaging over 24 SRCIs. This averaging is performed in overlapping windows
throughout the investigation period (28 February 2015 to 11 March 2015). The averaging
window is shifted by one SRCI (by one hour) until the last day of the investigation period
is reached (11 March 2015). An example of the SRCI computations is shown in Figure 9. All
resulting moving averages are shown in Figure S3.

Note that the horizontal axis in panel (b) denotes the number of days (28 February
2015 to 11 March 2015); the vertical axis represents the averaged SRCIs. Since every SRCI
is measured in percent, the averages of the SRCIs are also measured in percent. Note
that the x-axis in panel (a) denotes hours (1–24), the y-axis represents the number of days
(28 February 2015, to 11 March 2015), and the vertical axis shows the SRCI (measured in
percent). The color scheme used in panel (a) represents the local time of each individual
location: bright yellow denotes the middle of the day, and dark blue shows the middle of
the night.
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Figure 9. SRCIs computed for the California site in the frequency range 0–1 Hz. The dynamics of the
SRCI in the time period between 28 February and 11 March 2015, is shown in panel (a). The color
scheme in panel (a) represents the local time (the bright yellow denotes the middle of the day and the
dark blue shows the middle of the night). The time shown on the x-axis in panel (a) corresponds to
GMT. Moving averages of SRCI (averages with the diel cycle eliminated) are depicted in panel (b).
The dynamics of SRCI computed for the California site in the frequency range 0–3.5 Hz are shown
in panel (c) and moving averages of the SRCI are depicted in panel (d). The dynamics of the SRCI
computed for the Canada site in the frequency range 0–1 Hz are shown in panel (e) and moving
averages of the SRCI are depicted in panel (f). The dynamics of the SRCI computed for the Canada
site in the frequency range 0–3.5 Hz are shown in panel (g) and moving averages of the SRCI are
depicted in panel (h).
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4.2. Hypothesis Based on the Meridian Coordinates of the Magnetometers

It is evident that the fluctuations in the averaged SRCIs vary significantly across
different locations (Figure S3). Nevertheless, the curves derived from magnetometer data
collected in California and Canada exhibit greater similarity in shape compared to those
reconstructed in Lithuania and New Zealand.

Therefore, it is interesting to observe the statistical correlation between different
magnetometers. Correlations were calculated as the standard similarity measure between
averaged SRCIs in different geographical locations (Tables 3–5), using Equation (5):

rxy =

5
∑

i=1
(xi − x̄)(yi − ȳ)√

5
∑

i=1
(xi − x̄)2(yi − ȳ)2

(5)

where xi and yi are the elements of the averaged SRCIs at locations X and Y, and x and y
are the global means of the averaged SRCIs at locations X and Y.

Table 3. The Pearson correlation coefficient between the averaged SRCIs, obtained by eliminating the
diel cycle, at different magnetometers within the 0–1 Hz frequency range.

CAN LTU CAL SAU NZ

CAN 1 −0.4274 0.4214 0.1033 0.1395

LTU −0.4274 1 −0.0383 0.4818 −0.1893

CAL 0.4214 −0.0383 1 0.0370 0.1154

SAU 0.1033 0.4818 0.0370 1 0.0349

NZ 0.1395 −0.1893 0.1154 0.0349 1

Table 4. The Pearson correlation coefficient between the averaged SRCIs, obtained by eliminating the
diel cycle, at different magnetometers within the 0–3.5 Hz frequency range.

CAN LTU CAL SAU NZ

CAN 1 −0.0823 0.6651 0.1535 0.1129

LTU −0.0823 1 0.0413 0.5670 0.2117

CAL 0.6651 0.0413 1 0.1353 −0.0362

SAU 0.1535 0.5670 0.1353 1 −0.0637

NZ 0.1129 0.2117 −0.0362 −0.0637 1

Table 5. The Pearson correlation coefficient between the averaged SRCIs, obtained by eliminating the
diel cycle, at different magnetometers within the 3.5–36 Hz frequency range.

CAN LTU CAL SAU NZ

CAN 1 0.1441 0.9295 0.3814 −0.2425

LTU 0.1441 1 −0.0414 0.6158 0.3684

CAL 0.9295 −0.0414 1 0.2945 −0.3787

SAU 0.3814 0.6158 0.2945 1 0.1807

NZ −0.2425 0.3684 −0.3787 0.1807 1

The correlation tables (Tables 3–5) confirm a surprisingly large correlation between
the magnetometers in California and Canada. Such a similarity gives the foundation for
the following hypothesis.
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Hypothesis 1. The correlation between the local magnetic fields (with the diel cycle eliminated)
measured at different locations around the globe depends on the absolute difference between the
longitudes of those locations.

The absolute differences between the meridian angles of the geographical sites of
different magnetometers are shown in Table 6. The numbers in parentheses following
the name of the country indicate the meridian angle of the magnetometer site in each
designated country.

In order to prove (or drop) Hypothesis 1, the correlation data in Tables 3–5 are coupled
with the absolute differences between the meridian angles of the magnetometer sites in five
different countries.

Examining the correlations between the SRCIs of magnetometers located in differ-
ent locations during the two-week period, we clearly observed moderate to very strong
relationships among the SRCIs calculated by consecutive magnetometers.

Table 6. The absolute difference between meridian angles of the magnetometer sites.

CAN (113) LTU (23) CAL (112) SAU (49) NZ (173)

CAN (113) 0 90 9 64 60

LTU (23) 90 0 99 26 150

CAL (112) 9 99 0 73 51

SAU (49) 64 26 73 0 124

NZ (173) 60 150 51 124 0

Among the magnetometers located in Canada and the USA we observe a relatively
small difference between their western meridians (about 8 degrees), and the data are clearly
significantly positively correlated. We observe a slightly larger, but also close distance
between the eastern meridians of the magnetometers located in Lithuania and Saudi Arabia
(about 26 degrees). One could conclude that magnetometers located in the same or nearby
meridians experience similar (or similar complexity) variations. Figure 10 indicates that
the New Zealand magnetometer falls out of the rule.

Figure 10. Relation between Pearson’s correlation coefficient and longitude angles where magne-
tometers are placed (with NZ).
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Figure 11 shows an almost linear correlation between the absolute difference in the
meridian angles and the correlation coefficients of the SRCI. This allows us to propose the
hypothesis that the averaged SRCI data could be related to the local tidal waves measured
at the nearest geographical locations to the corresponding magnetometers.

Figure 11. Relation between Pearson’s correlation coefficient and longitude angles where magne-
tometers are placed (without NZ).

Hypothesis 2. The SRCI measured at different locations around the world correlates with the
analogous complexity index of the tidal waves measured at the nearest geographical locations.

5. Tidal Effects on the Local Magnetometers
5.1. Tidal Wave Complexity Index (TWCI)

Data representing tidal wave measurements can be retrieved from the University of
Hawaii, Sea Level Center website [48]. The data of the tidal waves (hourly sea level mea-
sured in millimeters) are collected from stations located at the closest meridians compared
to the magnetometers. The data covers the period from 28 February 2015 to 11 March 2015,
matching the timeframe of the magnetic field investigation. The selected measurement
stations include Easter Island, Chile ( −27.15000, −109.44800); Hanimaadhoo, Maldives
(6.76700, 73.17300); Dzaoudzi, France ( −12.78200, 45.25800); San Francisco, CA, USA
(37.80700, −122.46500); and Honningsvag, Norway (70.98300, 25.98300) (Table 7). Note
that the oceanic water movements do not have a strong impact on the measurement of
SRA because all magnetometers of the Global Coherence Monitoring System are located far
from the shoreline. An example of the computed results is shown in Figure 12. Note that
there is an observable phase difference between the SRCI and TWCI signals in Figure 12.
However, we use statistical formulae, not visual comparisons, between plotted signals to
derive correlations between signals. The explanation of this phase difference in Figure 12
goes beyond the objectives of this study.

As defined in the previous section, magnetic field data are represented by the SRCI in-
dex. To maintain consistency in the comparison between magnetic field and tidal wave data,
we introduce the Tidal Wave Complexity Index (TWCI). The computation methodology for
the TWCI remains the same as that presented for the SRCI in previous sections.

The size of the Hankel matrix used to embed the tidal wave data is set to 24 × 24 due
to the hourly sea level measurements. H-rank computations are performed in overlapping
observation windows (the width of the window is set to 48 data points). Computations
continue until the last data point in the two-week observation period is reached. Note
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that the calibration of ε is performed once for the first 48 iterations. The strategy for
the calibration of the threshold parameter ε remains the same as for the SRCI. The aim
is to choose such a value of ε that the average TWCI would be exactly equal to 50%.
The calibrated threshold parameter ε for each location of the tidal wave is presented in
Table 8.

Figure 12. SRCIs computed for the magnetometer data located in California in the frequency
ranges 0–1 Hz, 0–3.5 Hz, and 3.5–36 Hz are shown in blue. The TWCI computed for the tidal wave
measurement station located in California is shown in red. The dynamics of the SRCI and TWCI are
depicted for the time period between 28 February and 11 March 2015.

Table 7. The nearest tidal waves measurement stations to the magnetometers (in terms of merid-
ian coordinates).

Location of the Tidal Waves Measurement Station Location of the Magnetometer

Hanimaadhoo, Maldives (6.76700, 73.17300) New Zealand ( −38.526368, 175.675718)

Dzaoudzi, France ( −12.78200, 45.25800) Saudi Arabia (25.383333, 49.583333)

Honningsvag, Norway (70.98300, 25.98300) Lithuania (55.638929, 23.722195)

Easter Island, Chile ( −27.15000, −109.44800) Canada (53.364561, −113.41565)

San Francisco, CA, the USA (37.80700, −122.46500) California (37.4192, −122.057)

Table 8. Calibrated threshold parameter ε for TWCI.

Location of the Tidal Waves Measurement Station Threshold Parameter ε

Hanimaadhoo, Maldives 27.2

Dzaoudzi, France 52.9

Honningsvag, Norway 40.5

Easter Island, Chile 147.5

San Francisco, CA, USA 79.5

Then, the complexity index characterizing the algebraic complexity of the investigated
time series is computed as the arithmetic average of all H-ranks computed on the current
day (which automatically eliminates the diel cycle). As previously, the threshold ε is not
recalibrated for the subsequent days. Those complexity index values are named as the
Tidal Wave Complexity Index (TWCI) .
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An example of the computed SRCI and TWCI is shown in Figure 12.

5.2. Statistical Analysis

A statistical analysis is performed to confirm or deny the proposed hypothesis that
the correlation between local magnetic fields (with the eliminated diel cycle) measured
at different locations around the world depends on the absolute difference between the
meridian coordinates of those locations (Hypothesis 1) and that the SRCI correlates with
the TWCI (Hypothesis 2).

We define the following statistical variables: Xi,1—SRCI of the ith region in the 0–1 Hz
range, Xi,2—SRCI of the ith region in the 0–3.5 Hz range, Xi,3—SRCI of the ith region in the
3.5–36 Hz range, Xi,4—TWCI of the ith region.

Pearson’s linear correlation and Spearman’s rank correlation coefficients are commonly
used in the study of the correlation relationship in statistics. Pearson’s coefficient is applied
when the data are normal. If the condition of normality of the variables is not satisfied or
the data are sparse, Spearman’s rank coefficient is applied.

We check whether the normality condition is satisfied. Applying the chi-square test
with a significance level of α = 0.05, we test the following hypotheses:

H0 : Xi,j ∼ N(µ̂i,j, σ̂i,j),

Ha : Xi,j ≁ N(µ̂i,j, σ̂i,j)
(6)

here µ̂i,j, σ̂i,j (i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, 3, 4}) —parameter estimates found by the maximum
likelihood method.

Since in all cases the p-value is lower than the selected level of significance (Table 9),
the hypotheses of the normality of variables Xi,1, Xi,2, Xi,3, Xi,4, i ∈ {1, 2, 3, 4, 5} are rejected.

As the normality condition is not satisfied, we will apply Spearman’s rank correla-
tion coefficient. Suppose we have pairs of variables (Xi,m, Xi,s), i ∈ {1, 2, 3, 4, 5}, m, s ∈
{1, 2, 3, 4} and observations (X1

i,m, X1
i,s), (X2

i,m, X2
i,s), . . . , (Xn

i,m, Xn
i,s). We arrange the obser-

vations X1
i,m, X2

i,m, . . . , Xn
i,m and X1

i,s, X2
i,s, . . . , Xn

i,s separately. Let R(Xk
i,t) be the rank of ob-

servation Xk
i,t. Then, the Spearman’s rank correlation coefficient is given by

ri
m,s =

n
∑

k=1
(R(Xk

i,m)−
n+1

2 )(R(Xk
i,s)−

n+1
2 )√

n
∑

k=1
(R(Xk

i,m)−
n+1

2 )2

√
n
∑

k=1
(R(Xk

i,s)−
n+1

2 )2

(7)

We calculate the Spearman’s correlation coefficient between the variables in each
region (Table 10 represents the Spearman’s correlation coefficients in California, Table 11
the coefficients in Canada, Table 12 those in Lithuania, Table 13 those in Saudi Arabia,
and Table 14 the coefficients in New Zealand).

The results obtained suggest that the correlation between pairs of variables Xi,1, Xi,2,
Xi,3, i ∈ {1, 2, 3, 4, 5}, in each region is strong or very strong, with the exception of the
Canadian region, where the pair (X2,1, X2,3) exhibits a moderate strength of connection.
However, it should be noted that in each region between variables Xi,1, Xi,2, Xi,3 and
variable Xi,4, i ∈ {1, 2, 3, 4, 5} there is a very weak or non-existent relationship.
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Table 9. The results of normality tests.

Region
i Distribution Parameter Estimation p-Value ≤

j µ̂i,j σ̂i,j

California 1

1 74.36 10.54 1.8·10−8

2 63.77 14.77 1.1 · 10−16

3 48.39 20 0
4 12.23 1.55 4.6 · 10−4

Canada 2

1 58.95 14.34 1.4 · 10−7

2 53.63 14.79 6.7 · 10−4

3 59.48 15.81 0
4 11.82 3.04 2.4 · 10−14

Lithuania 3

1 94.13 2.95 4.2 · 10−3

2 79.36 6.89 6.3 · 10−11

3 76.9 10.31 3.7 · 10−4

4 12.28 1.44 0

Saudi Arabia 4

1 73.96 6.97 0
2 78.51 7.4 4 · 10−9

3 72.82 9.68 9 · 10−4

4 12.21 1.34 0

New Zealand 5

1 71.12 17.07 3.6 · 10−4

2 85.09 16.4 3.1 · 10−5

3 88.88 14.57 6.5 · 10−8

4 12.07 1.16 8.6 · 10−8

Table 10. Spearman’s correlation coefficient values (i = 1, region—California).

ri
m,s Xi,1 Xi,2 Xi,3 Xi,4

Xi,1 1 0.95 0.72 0.22

Xi,2 0.95 1 0.82 0.18

Xi,3 0.72 0.82 1 0.25

Xi,4 0.22 0.18 0.25 1

Table 11. Spearman’s correlation coefficient values (i = 2, region—Canada).

ri
m,s Xi,1 Xi,2 Xi,3 Xi,4

Xi,1 1 0.89 0.45 0.45

Xi,2 0.89 1 0.70 0.22

Xi,3 0.45 0.70 1 -0.23

Xi,4 0.45 0.22 −0.23 1

Table 12. Spearman’s correlation coefficient values (i = 3, region—Lithuania).

ri
m,s Xi,1 Xi,2 Xi,3 Xi,4

Xi,1 1 0.94 0.88 0.31

Xi,2 0.94 1 0.89 0.43

Xi,3 0.88 0.89 1 0.41

Xi,4 0.31 0.43 0.41 1
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Table 13. Spearman’s correlation coefficient values (i = 4, region—Saudi Arabia).

ri
m,s Xi,1 Xi,2 Xi,3 Xi,4

Xi,1 1 0.92 0.80 0.14

Xi,2 0.92 1 0.90 0.26

Xi,3 0.80 0.90 1 0.28

Xi,4 0.14 0.26 0.28 1

Table 14. Spearman’s correlation coefficient values (i = 5, region—New Zealand).

ri
m,s Xi,1 Xi,2 Xi,3 Xi,4

Xi,1 1 0.96 0.72 -0.05

Xi,2 0.96 1 0.86 0.04

Xi,3 0.72 0.86 1 0.24

Xi,4 -0.05 0.04 0.24 1

To determine the statistical significance of the values of the correlation coefficients
obtained, we subject the results to hypothesis testing. We test the following hypotheses:

H0 : ri
m,s = 0,

Ha : ri
m,s ̸= 0

(8)

where i ∈ {1, 2, 3, 4, 5}, m ̸= s, (m, s) ∈ {1, 2, 3, 4}.
The following statistical measure is used to test the hypothesis:

Ti
m,s = ri

m,s

√
n − 2

1 − (ri
m,s)

2 (9)

When the null hypothesis H0 is true, the distribution of the statistic Ti
m,s follows a

Student’s t-distribution with (n − 2) degrees of freedom. Therefore, the p-value for the
applied criterion is calculated as follows:

Pi
m,s = P(|T| ≥ |Ti

m,s|) (10)

where T is a random variable distributed according to the Student’s t-distribution with
(n − 2) degrees of freedom.

We select the significance level α = 0.05 to evaluate each hypothesis. The p-value
for each hypothesis is then calculated. If the p-value is less than or equal to α = 0.05 we
reject the null hypothesis, indicating a statistically significant result. Conversely, if the
p-value is greater than α = 0.05, we fail to reject the null hypothesis, suggesting a lack of
statistical significance.

Table 15 indicates that, for the regions of the USA, Canada, Lithuania, and Saudi Ara-
bia, the Spearman’s rank correlation coefficients are significantly different from zero. This
implies that the null hypotheses H0, which assert that the quantities are not correlated, are
rejected in these cases. In the case of New Zealand, it should be noted that the hypotheses
of the non-correlation between the quantities X5,1 and X5,4, X5,2 and X5,4 cannot be rejected.
This outcome is likely due to the fact that the values of the Spearman’s rank correlation
coefficient are close to 0.
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Table 15. The results of testing of significance of the correlation coefficients.

Region i Pi
1,2 Pi

1,3 Pi
1,4 Pi

2,3 Pi
2,4 Pi

3,4

California 1 0 0 4 · 10−8 0 8.2 · 10−5 4 · 10−5

Canada 2 0 1.4 · 10−14 6.3 · 10−14 0 1.6 · 10−4 4 · 10−5

Lithuania 3 0 0 5.1 · 10−11 0 0 6.7 · 10−16

Saudi Arabia 4 0 0 3.3 · 10−3 0 6.8 · 10−7 1.6 · 10−6

New Zealand 5 0 0 4.2 · 10−1 0 4.2 · 10−1 3.2 · 10−4

6. Concluding Remarks

As a result of the research presented in this article, we introduced the Schumann
Resonance Complexity Index (SRCI). This is a new complexity measure designed for the
measurement of algebraic complexity in magnetometers within the Global Coherence
Network. This result is particularly interesting, as it fundamentally differs from all other
measures of magnetic field complexity, such as the Kp index and other indices that globally
represent the properties of the Earth’s magnetic field.

On further analysis, we observed that the elimination of diel cycles from the SRCI data
yields interesting results. It appears that the correlations between different magnetometers
are strongly related to the meridian angles: the smaller the difference in absolute values
between the meridian angles, the larger the correlation between different magnetometers.
No such similarities would be noticed when analyzing the raw magnetic field signals alone.
This is the second result of this article, allowing the exploration of connections between
different magnetometers.

This similarity immediately gives rise to a series of hypotheses. The first hypothesis
suggests that if meridians play a significant role in the similarity between different magne-
tometers, it should be related to the influence of the Moon. However, since the magnetic
field is measured locally at specific geographic locations, our intention was to evaluate the
local tidal effects caused by the Moon. Fortunately, the existence of the global network
of tidal waves (significantly larger than the global network of magnetometers) makes
this task possible. The selection of the tidal wave monitoring station for each individual
magnetometer was based on proximity. However, the geographical proximity was not the
only important factor—the meridian proximity was taken into consideration because of the
raised hypothesis.

Note that we did not directly measure correlations between the SRCI data and the tidal
wave data. In principle, the signals are entirely different: the sampling rate of the magnetic
field is 130 Hz, whereas tidal waves constitute one measurement per hour. Despite this,
we introduce an identical complexity measure for tidal waves: the Tidal Wave Complexity
Index (TWCI).

Having two indices, the Schumann Resonance Complexity Index (SRCI) and the Tidal
Wave Complexity Index (TWCI), makes it possible to statistically and reliably explore
possible connections. The statistical analysis yields truly intriguing results. And though the
New Zealand magnetometer falls out of the rule, all the remaining magnetometers appear
to be significantly correlated to the tidal effects. Thus, the main result of this article is the
demonstration of the fact that the influence of the Moon (usually observed through tidal
waves) affects the readings of the local magnetic field data recorded by the global network
of magnetometers. Although this is the first demonstration of such an effect, in principle it
is not astonishing. It is well known that tidal effects induced by the Moon affect not only
water tides but also crustal displacements and the magnetosphere of the Earth. Naturally,
one could expect that the same effects will also manifest in the local magnetic field. This
study confirms this fact.



Appl. Sci. 2024, 14, 3332 22 of 24

7. Discussion and Limitations

Possibly, the elimination of the diel cycle removes not only Sq variations (over a 24 h
period) from the magnetic data, but also some part of the 12 h interval, which is close to
the period of the lunar tidal wave. Therefore, emphasizing the lunar effect in magnetic
variations is very difficult.

The five magnetic stations are located across the Earth, starting from Alberta, Northern
Canada, to Baisiogala, Lithuania, Eastern Europe, close to subauroral latitudes. In this
case, latitudinal and longitudinal magnetic variations due to lunar tidal waves can also
be discussed.

There are several studies exploring the varying influences of high-latitude electric
fields and atmospheric waves on daily fluctuations of ionospheric currents [49], studying
the seasonal longitudinal climatology of semi-diurnal lunar tidal variation in the equatorial
electrojet [50], describing the semi-diurnal lunar tidal influence on neutral winds, plasma
velocities, and atomic oxygen airglow [51], and exploring semi-diurnal tidal variations and
their effects on the ionosphere–thermosphere–mesosphere system [52].

This work focuses exclusively on the coordinates of the meridian and delves into the
essence of tidal waves. Although other aspects, such as different coordinates and types
of waves, could be explored, they remain beyond the scope of this study. These areas
could serve as subjects for future research efforts, extending the understanding of tidal
phenomena and local magnetic field in diverse contexts.

It is well established that the Moon influences the global and local magnetic field of
the Earth, a fact confirmed and demonstrated through detailed studies performed not with
data from five magnetometers scattered around the world but with data from dozens of
magnetometers belonging to regular (and officially recognized by the scientific community)
geomagnetic observatories covering our planet in latitude and longitude. Although the
results discussed herein are based on the analysis of limited data over time and from few
observation sites, the statistical treatment of the presented data is undoubtedly correct and
appropriate. Geomagnetic conditions were not considered or characterized in this study,
but could be a topic for further research.

An area for potential improvement in the study lies in the comparison of data between
local magnetic field measurement sites and nearby tidal wave measurement stations, rather
than prioritizing comparison based on geomagnetic proximity. It should be noted that
the global dipolar magnetic field establishes geomagnetic coordinates, a crucial reference
system for understanding conjugate effects between distinct points on Earth’s surface.
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tional results.
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