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Abstract—The early and accurate diagnosis of sepsis is crit-
ical for enhancing patient outcomes. This study aims to use
heart rate variability (HRV) features to develop an effective
predictive model for Sepsis-3 detection. Critical HRV features
are identified through feature engineering methods, including
statistical bootstrapping and the Boruta algorithm, after which
XGBoost and Random Forest classifiers are trained with dif-
ferential hyperparameter settings. In addition, ensemble models
are constructed to pool the prediction probabilities of high-recall
and high-precision classifiers and improve model performance.
Finally, a deep learning model is trained on the HRV features,
achieving an F1 score of 0.805, a precision of 0.851, and a
recall of 0.763. The best-performing machine learning model
is compared to this neural network through an interpretability
analysis, where Local Interpretable Model-agnostic Explanations
are implemented to determine decision-making criterion based
on numerical ranges and thresholds for specific features. This
study not only highlights the efficacy of HRV in automated
sepsis diagnosis but also increases the transparency of black box
outputs, maximizing clinical applicability.

Index Terms—Sepsis-3, Heart Rate Variability, Feature Engi-
neering, Machine Learning, Model Interpretability

I. INTRODUCTION

Sepsis-3 represents the latest consensus definition on sepsis
and septic shock, posing a significant global health issue with
a high mortality rate and economic burden [1] [2]. Sepsis
is characterized by a dysregulated host response to infection,
causing fever and an abnormal white blood cell count [3]. Ac-
curate diagnosis of sepsis is critical for reducing mortality rates
and substantial healthcare costs [4] [5]. Though advances like
the quick Sequential Organ Failure Assessment (qSOFA) may
enhance early sepsis detection, the frequent vital sign moni-
toring and reassessment required adds significant burdens to
nursing workload, in return for already-questionable timeliness
and accuracy [6]. Heart rate variability (HRV), which reflects
autonomic nervous system activity and is extractable from
heart-monitoring devices like ECG, emerges as a promising
non-invasive tool for early sepsis detection due to its ability to
detect dysregulation before clinical symptoms appear [7]–[10].

Bedoya et al. (2020) and van Wijk et al. (2023) employ
machine learning and continuous ECG monitoring for sepsis
prediction, harnessing both invasive and non-invasive patient
data to advance early sepsis detection standards [11] [12]. In
contrast, our research zeroes in on exploiting HRV metrics
for non-invasive, continuous monitoring of sepsis, offering a
streamlined, patient-centric approach.

Sendak et al. (2020) successfully implemented “Sepsis
Watch,” a deep learning-based sepsis detection tool integrating
both invasive and non-invasive clinical data, into everyday
clinical practice, showcasing the practical application and
benefits of advanced machine learning techniques in enhanc-
ing sepsis management [13]. Henry et al. (2015) developed
TREWScore, an intricate predictive model for septic shock
that utilizes a wide array of physiological and laboratory
data and outperforms traditional methods in early detection
[14]. Building upon these two works, our study demonstrates
that the same types of state-of-the-art models can operate on
HRV metrics exclusively, resulting in a simpler feature space
and more explainable and effective method for early sepsis
detection in a clinical environment.

Additionally, in comparison to Van Wijk et al.’s analyzis of
171 emergency organ dysfunction cases, our study examines a
more extensive dataset of 4,314 patient cases [12]. Our novel
approach spearheads the analysis of 57 HRV-derived metrics,
employing statistical analyses, feature selection, and model
construction strategies to uncover relevant relationships be-
tween HRV and Sepsis-3. We also present case studies demon-
strating enriched understanding of model decision-making that
may be crucial for physician-mediated environments.

II. METHODS

Fig. 1 encapsulates this study’s methodology, portraying ex-
perimental design, data acquisition, statistical analysis, feature
selection, model construction, ensembling mechanisms, and
model explainability under the umbrella of Sepsis-3 diagnosis.

A. Data Availability Statement

The dataset used in this research is titled “Derivation and
Validation of Heart Rate Variability-Based Scoring Models
for Continuous Risk Stratification in Patients with Suspected
Sepsis in the Emergency Department,” authored by Kuan-Fu
Chen from Chang Gung University College of Medicine and
dated December 9, 2020 [15].

B. Statistical Analysis

1) Relative Histogram Plot and Preliminary Assessment:
We preliminarily assess feature relevance by visually compar-
ing the distribution of HRV features between individuals with
and without Sepsis3. We then conduct t-tests and nonparamet-
ric bootstrapping for each HRV feature to identify statistically



Fig. 1. Experimental Design

significant differences in mean values between patient sub-
groups. The nonparametric bootstrap enhances the reliability
of the t-test by addressing the normality assumption. These
statistical analyses establishes a foundation for identifying
HRV features most relevant to Sepsis-3, setting the stage for
more complex machine learning model development.

C. Feature Selection

We test three separate feature selection mechanisms and
discuss a final method that incorporates elements from all.

1) Model-based Feature Selection: Model-based feature
selection utilizes the intrinsic “importance scores” from en-
semble tree-based methods, such as random forest and gradient
boosting, to identify and retain HRV features that significantly
contribute to predicting Sepsis-3. This approach captures influ-
ential predictors and excludes irrelevant noise from the dataset.

2) Boruta Wrapper Method: The Boruta algorithm, a wrap-
per method, systematically identifies relevant HRV features by
generating shadow features, comparing their importance with
actual features’ importance through a random forest classifier,
and only selecting features that consistently show stronger
signals than the highest-ranking shadow feature [16].

3) Statistical Selection: By employing statistical signif-
icance tests through bootstrapping, this method determines
features with sheer numerical relevance for Sepsis-3 diagnosis.

We apply the Boruta method in conjunction with additional
statistical validation, first using the Boruta algorithm to iden-
tify potentially relevant features and then using statistical tests
to select only features surpassing a significance threshold. This
hybrid method aims to yield an optimized feature set with
high predictive ability, thereby improving the accuracy and
dependability of the Sepsis-3 predictive model.

D. Model Construction

The model construction phase encompasses data prepro-
cessing to standardize feature scales followed by the training
of Extreme Gradient Boosting, Random Forest, and Neural
Network models. For machine learning models, we carefully
optimize decision thresholds by selecting the β parameter
(of the F-beta score) that maximizes F1 score. Moreover, we
handle the challenge of imbalanced classes within the dataset
by implementing class weights as loss function coefficients.
The following are design specifications for our models:

• Random Forest Classifier: Employs 1000 trees with a
maximum depth of 10.

• XGBoost Classifier: Employs maximum of 1,000 esti-
mators and learning rate of 0.01.

• Neural Network: Contains four dense layers populated
with 64 hidden units each, employing batch normalization
and dropout regularization to prevent overfitting.

E. Ensembling Techniques to Couple Model Decision-Making

After the development of individual models, we implement
an ensemble method to leverage the strengths of individual
predictive models for diagnosing Sepsis-3, aiming to enhance
overall predictive performance by combining models with
high precision and recall. Prediction probabilities from models
excelling in one of precision and recall are stored in a data
frame, forming the basis for subsequent ensemble strategies.

1) ML Ensembling: This ensemble approach integrates the
output probabilities of a high precision model (HPM) and
a high recall model (HRM) as input features, then trains
a machine learning model on these probabilities with the
objective of enhancing overall F1 score. We apply Logistic
Regression and Support Vector Classifiers to this task.

2) Manual Ensembling: The manual ensembling method
introduces a custom, rule-based strategy to combine predic-
tions from models with high precision and recall, delivering
a final Sepsis-3 diagnosis based on conditions of agreement
or disagreement between the models. By assigning compound
prediction statuses through a custom function, this technique
provides a nuanced analysis of model consensus, leveraging
the comparative advantages of high precision and high recall
models.

F. Model Explainability

In an effort to bridge the gap between complex ma-
chine learning models, simple diagnostic outputs, and prac-
tical clinical applicability, this study integrates Local In-
terpretable Model-agnostic Explanations (LIME) to illumi-
nate the decision-making processes of the highest-performing



model in predicting Sepsis-3 [17]. LIME provides granular
insights into individual predictions, highlighting the relevance
of specific HRV features in the model’s conclusions, thereby
demystifying the model’s operational logic for clinicians and
healthcare practitioners.

III. RESULTS

A. Statistical Analysis

Fig. 2 shows the distributions of two selected features for
healthy and infected patients. We can see that the difference in
mean values is visually noticeable; such observations guided
our statistical feature selection framework. We further quantify
the degree of phenotype difference using the t-statistic and p-
value for each HRV feature. Statistical analysis reveals that
mean heart rate, though elementary, is a strong predictor for
Sepsis-3. Alongside mean heart rate are features like Shannon
entropy and forbidden words, derived from a symbolic dynam-
ics representation of time-series heart data. Fig. 3 displays the
log of the absolute value of the difference in means for the
fifteen most statistically significant features in the dataset.

Fig. 2. Feature Distributions by Sepsis-3 Status

B. Feature Selection and Importance

Utilizing the XGBoost and Random Forest model-based
feature selection methods result in the identification of 52 and
25 key features, respectively, with a significant overlap, under-
scoring crucial HRV metrics detailed in Table III. The Boruta
algorithm identifies 42 features, and a subsequent statistical-
based bootstrapping analysis pinpoints 41 of these 42 features
as statistically significant. These 41 features are collectively
noted as Boruta-bootstrap features as in Table III. Our multi-
faceted feature selection process not only underscores the
complexity of Sepsis-3 pathophysiology but also highlights the
diverse HRV metrics essential for accurate prediction models.

C. Model Performance Metrics

As a result of our exhaustive methodology applying dif-
ferent hyperparameters, feature sets, and machine learning
architectures to the sepsis diagnosis task, we create three tables

Fig. 3. Top 15 Statistically Significant Sepsis Features Based on Bootstrap-
ping Difference Of Means

summarizing the performance metrics for all architectures
tested. Tables IV, V and VI capture the nuances of the
relationship between said settings and model performance.
Namely, XGBoost is the better overall performer compared
to Random Forest, and the Boruta-bootstrap feature selection
mechanism tends to result in the best model when optimizing
for precision and recall – individually and in tandem. On the
other hand, using random forest’s intrinsic feature importance
scores seem to lead to weak performance, which may not
necessarily mean that these importance scores are irrelevant,
but may very well be a testament to the added value of fine-
tuning. Overall, we are unable to configure a model yielding
both a precision and recall higher than 0.8; the best ML model
is an XGBoost with bootstrap-determined features, achieving
a F1 score of 0.745.

Notably, the Neural Network outperforms all machine learn-
ing models, emerging as a promising HRV-based classifier
of Sepsis-3. Utilizing Boruta-bootstrap features, our model
achieves a F1-score of 0.805, with a precision of 0.851 and
recall of 0.763. We display learning curves in Fig. 4, which
illustrate convergence after roughly 500 training epochs and
mitigation of overfitting. Table I displays a confusion matrix
for the deep learning model’s correct and incorrect predictions
on the testing data, and Table II displays performance metrics.

TABLE I
CONFUSION MATRIX FROM NEURAL NETWORK MODEL

Predicted: No Sepsis Predicted: Sepsis
Actual: No Sepsis TN = 926 FP = 18 944
Actual: Sepsis FN = 32 TP = 103 135

958 121 1079

D. Ensembling Techniques
In theory, ensembling classifers together for coupled model

decision-making should improve performance [18]. Our results



Fig. 4. Neural Network Learning Curves: Loss and F1 Score

weakly support this claim, as we find that the best ensemble
does not perform as well as the best fine-tuned individ-
ual ML model, but outperforms an off-the-shelf XGBoost
baseline. The logistic regression ensemble, merging a high-
precision XGBoost model with a high-recall Random Forest
model, achieves an F1-score of 0.724, with precision and
recall metrics also presented. Interestingly, the support vector
machine ensemble demonstrates better performance by 0.4%
but has a 11.2% higher recall and 10.2% lower precision.
Overall, both ensembling approaches yield favorable outcomes
summarized in Table II. We can think of the input data frame
of probabilities as an information-dense, specially-selected set
of features; this allows for greater coupling accuracy even if
the ensemble is a simple model like logistic regression.

We further visualize the results of ensembling by plotting
two sets of probabilities against each other: Fig. 5 contains
prediction probabilities of the high precision model (HPM) on
the x-axis and prediction probabilities of the high recall model
(HRM) on the y-axis. Ideally, this plot yields two “regions”
separable by a straight line (or any other decision boundary
that can be learned by an ML model). In our case, there seems
to be only a faint curve of separation between purple and
yellow points, representing an inability to perfectly separate
healthy and affected patients.

Fig. 5. 2-D Feature Space: HPM and HRM Prediction Probabilities

The manual ensemble method also reveals a notable recall
of 0.825 alongside a model accuracy of 72.07%. Regarding
clinical implementation, we encounter a 26.76% classification
disagreement rate between the high precision and high recall
models. In practice, these patients should be referred for
physician diagnosis.

TABLE II
PREDICTIVE PERFORMANCE ACROSS MACHINE LEARNING MODELS

Model F1 Score Precision Recall
Baseline XGBoost 0.682 0.689 0.676
Ensemble: Logistic Regression 0.724 0.791 0.667
Ensemble: SVM 0.728 0.689 0.778
Best ML Model (XGBoost) 0.745 0.760 0.731
Neural Network 0.805 0.851 0.763

E. Explainability Insights

Local Interpretable Model-agnostic Explanations (LIME)
for the XGBoost model and Neural Network provide insightful
perspectives on how HRV features are differentially weighed
in a model prediction. From this, we may be able to untangle
the complexity of HRV feature and even infer physiological
implications.

1) Key Findings from XGBoost (Fig. 6):
• Frequency Domain Measures: The feature fFdP sur-

faces with significant importance across various ranges:
when fFdP > 0.24, the XGBoost model interprets this as
an elevated Sepsis-3 risk by almost 8% on average. When
−0.31 < fFdP ≤ −0.24, the severity of increased risk
drops to around 3%. When −0.67 < fFdP ≤ −0.31, the
model reverses its decision-making, adding around 3%
to the healthy diagnosis. Finally, when fFdP ≤ −0.67,
the model is confident in a decreased Sepsis-3 risk by
almost 8%. This case study highlights the nuanced impact
of HRV frequency domain measures on the model’s
Sepsis-3 diagnosis. As one can see, the XGBoost model
“discretizes” the fFdP feature, transforming a continuous
feature scale into relevant percentages toward or against
a Sepsis-3 diagnosis.

• Amplitude and Non-linear Characteristics: Features
such as aFdP and KLPE appear in multiple ranges, indi-
cating the critical role of amplitude variations and non-
linear dynamics in HRV analysis, potentially reflecting
the autonomic nervous system’s regulation.

• Variability Indicators: IoV (index of variability) and
mean heart rate are identified as vital for understanding
HRV patterns, as they may signify physiological adapt-
ability and resilience.

2) Neural Network Model Insights (Fig. 7):
• Highlighted Features: Unlike the XGBoost model, the

neural network does not prioritize fFdP, and rather seems
to choose a whole new set of features altogether to give
prominence to in the decision-making process. For exam-
ple, the features vlmax, dlmax, shannEn, and Poincar.SD2
have a pronounced association with HRV outcomes.



Fig. 6. LIME Average Feature Importance on Test Dataset using XGBoost
Model

3) Comparison: Analysis for both models, while show-
casing some overlap in feature significance (e.g. frequency
domain measures, non-linear dynamics), also revealed distinct
differences in the importance range of specific features. This
discrepancy may arise from inherent differences in how each
model approaches the task, with the neural network modeling
non-linear relationships for example.

IV. DISCUSSION

Advancements in HRV-Based Early Sepsis Detection

Our comprehensive framework not only highlights the po-
tential for artificial intelligence to significantly advance Sepsis-
3 diagnostics but also emphasizes the promise of non-invasive
monitoring methodologies through heart rate variability. Our
initial trial of machine learning models with different hyperpa-
rameters and feature selection mechanisms reveals a maximum
F1 score of 0.745. Introducing deep learning methods signif-
icantly increases this metric, as our neural network achieves
a 0.805 F1 score. This suggests nonlinearity between HRV
features and Sepsis-3.

We try to bring clinical utility to this work in two ways. We
first offer interpretable explanations that allow physicians and
users to understand a model’s decision-making criteria. We
also prescribe a manual ensembling mechanism where two
models, each specializing in one of precision and recall, are
locked in a system of “checks and balances” to provide a final
Sepsis-3 diagnosis. This manual ensemble is a feasible clinical

Fig. 7. LIME Average Feature Importance on Test Dataset using Neural
Network

tool, as instances of model agreement can be trusted (0.825
recall), while instances of model disagreement can simply call
for human intervention. This represents a pivotal progression
toward integrating machine learning in clinical settings for
predictive diagnostics; overall, our study corroborates the
claims of van Wijk et al. (2023) regarding the indispensable
role of HRV analysis in healthcare outcomes [12].

A. XGBoost LIME Explanations

Frequency Domain Measures: Van Wijk et al. found that
the average of the NN-interval, ultra-low frequency (ULF),
very low frequency (VLF), low frequency (LF), and total
power differed significantly between groups with varying
degrees of organ dysfunction in sepsis patients [12]. In our
case, LIME explanations for the XGBoost model identify
frequency domain-related features such as LF.Power.LS and
LF.HF.ratio.LS as having considerable importance. This align-
ment suggests that changes in the frequency domain measures
of HRV are indeed indicative of physiological alterations,
potentially related to organ dysfunction or sepsis.

B. Neural Network LIME Explanations

Continuous Monitoring Capability: The utility of continu-
ous ECG monitoring highlighted by van Wijk et al. aligns with
the importance of dynamic features such as Poincar.SD2 and
shannEn identified by the Neural Network’s LIME explana-
tions [12]. Such features, derived from continuous data, could
provide a granular view of HRV changes over time, potentially



enhancing the predictive capability for clinical deterioration in
sepsis patients.

Previous research, in conjunction with our LIME explana-
tions, underscore the potential of HRV analysis in monitoring
clinical deterioration in sepsis patients. We advocate for the
adoption of HRV features in automated sepsis detection; we
argue that the equipment and capabilities required are already
in place, as HRV features can be extracted from devices such
as ECG and passed to machine learning pipelines for patient
diagnosis. As a non-invasive, real-time indicator of physiolog-
ical change, HRV is a prime feature for risk stratification and
monitoring tools in clinical settings.

V. CONCLUSION

This research effectively leverages heart rate variability to
enhance Sepsis-3 detection. We pinpoint a critical set of HRV
features by implementing a hybrid Boruta-bootstrapping fea-
ture engineering mechanism. We assemble a suite of advanced
machine learning models with differential β values, then
ensemble high-precision and high-recall models to visualize
a 2-D feature space of probabilities. Though ensembling does
not boost model performance significantly, we find that deep
learning methods result in the highest F1 score, with our Dense
Neural Network achieving an F1 Score of 0.805, a precision
of 0.851, and a recall of 0.763. Furthermore, we include
Local Interpretable Model-agnostic Explanations to elevate
this model from a mere predictive tool to a transparent system
with clinical applicability. Consequently, this research marks
a significant advancement in sepsis risk stratification, offering
healthcare providers a tool that identifies at-risk patients and
provides insights into physiological indicators, merging early
detection with actionable intelligence.

VI. ADDITIONAL INFORMATION

The authors have made the code used in this research
available on GitHub (click).
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TABLE III
SEPSIS FEATURE SELECTION AND IMPORTANCE

Feature Name Description XGB RF B Bo B Bo
Mean.rate heart rate in BPM Y Y Y Y Y
Coefficient.of.variation ratio of the standard deviation to the mean Y N Y Y Y
Poincar..SD1 Poincaré plot standard deviation perpendicular the line of identity Y Y Y Y Y
Poincar..SD2 Poincaré plot standard deviation along the line of identity Y Y Y Y Y
LF.HF.ratio.LS Ratio of LF-to-HF power Y Y Y Y Y
LF.Power.LS power of the low-frequency band Y Y Y Y Y
HF.Power.LS power of the high-frequency band Y Y Y Y Y
DFA.Alpha.1 Detrended fluctuation analysis, which describes short-term fluctuations Y N Y Y Y
DFA.Alpha.2 Detrended fluctuation analysis, which describes long-term fluctuations N N Y Y Y
Largest.Lyapunov.exponent measures a non-linear system’s sensitive dependence on starting conditions N N N Y N
Correlation.dimension Estimate of required model variables Y N Y Y Y
Power.Law.Slope.LS Power Law (based on frequency) slope x2 Y Y Y Y Y
Power.Law.Y.Intercept.LS Power Law (based on frequency) y-intercept x2 Y Y Y Y Y
DFA.AUC Detrended fluctuation analysis: area under the curve Y Y Y Y Y
Multiscale.Entropy Multiscale entropy - measures the regularity and complexity of a time series Y N Y N Y
VLF.Power.LS Absolute power of the very-low-frequency band Y Y Y Y Y
Complexity Hjorth parameter complexity Y Y Y Y Y
eScaleE Embedding scaling exponent N N N Y N
pR Recurrence quantification analysis: percentage of recurrences Y N N Y N
pD Recurrence quantification analysis: percentage of determinism Y N N N N
dlmax Recurrence quantification analysis: maximum diagonal line Y N N Y N
sedl Recurrence quantification analysis: Shannon entropy of the diagonals Y N N Y N
pDpR Recurrence quantification analysis: determinism/recurrences Y N N Y N
pL Recurrence quantification analysis: percentage of laminarity N N N N N
vlmax Recurrence quantification analysis: maximum vertical line Y N Y Y Y
sevl Recurrence quantification analysis: Shannon entropy of the vertical lines N N N N N
shannEn Shannon entropy, measures uncertainty in a random variable Y Y Y Y Y
PSeo Plotkin and Swamy energy operator: average energy Y Y Y Y Y
Teo Teager energy operator: average energy Y Y Y Y Y
SymDp0 2 Symbolic dynamics: percentage of 0 variations sequences, non-uniform case Y N N Y N
SymDp1 2 Symbolic dynamics: percentage of 1 variations sequences, non-uniform case Y N N Y N
SymDp2 2 Symbolic dynamics: percentage of 2 variations sequences, non-uniform case Y N Y Y Y
SymDfw 2 Symbolic dynamics: forbidden words, non-uniform case Y N N Y N
SymDse 2 Symbolic dynamics: Shannon entropy, non-uniform case Y N N Y N
SymDce 2 Symbolic dynamics: modified conditional entropy, non-uniform case Y N N Y N
formF Form factor Y N Y Y Y
gcount Grid transformation feature: grid count Y Y Y Y Y
sgridAND Grid transformation feature: AND similarity index Y Y Y Y Y
sgridTAU Grid transformation feature: time delay similarity index Y N Y Y Y
sgridWGT Grid transformation feature: weighted similarity index Y N Y Y Y
aFdP Allan factor distance from a Poisson distribution Y Y Y Y Y
fFdP Fano factor distance from a Poisson distribution Y Y Y Y Y
IoV Index of variability distance from a Poisson distribution Y Y Y Y Y
KLPE Kullback-Leibler permutation entropy Y Y Y Y Y
AsymI Multiscale time irreversibility asymmetry index Y Y Y Y Y
CSI Poincaré plot cardiac sympathetic index Y N Y Y Y
CVI Poincaré plot cardiac vagal index Y Y Y Y Y
ARerr Predictive feature: error from an autoregressive model Y Y Y Y Y
histSI Similarity index of the distributions Y N N Y N
MultiFractal c1 Multifractal spectrum cumulant of the first order Y N Y Y Y
MultiFractal c2 Multifractal spectrum cumulant of the second order Y N Y Y Y
SDLEalpha Scale-dependent Lyapunov exponent slope Y N Y Y Y
SDLEmean Scale-dependent Lyapunov exponent mean value Y N Y Y Y
QSE Quadratic sample entropy Y Y Y Y Y
Hurst.exponent Rate at which autocorrelations decrease as the lag between pairs of values increases Y Y Y Y Y
mean Mean value Y N Y Y Y
median Median value Y N Y Y Y
XGB refers to XGBoost, RF refers to Random Forest, B refers to Boruta, Bo refers to Bootstrap, and B Bo refers to Boruta-bootstrap, each
representing different feature selection methodologies applied in this study.



TABLE IV
MODEL PERFORMANCE METRICS, BETA = 1.0

Model Features selected Fl Score Precision Recall

XGBoost

bootstrap 0.745 0.760 0.731
boruta bootstrap 0.742 0.726 0.759
boruta 0.732 0.773 0.694
xgboost 0.731 0.809 0.667
randomforest 0.726 0.695 0.759

Random
Forest

boruta bootstrap 0.633 0.636 0.630
boruta 0.631 0.571 0.704
bootstrap 0.628 0.567 0.704
xgboost 0.628 0.567 0.704
randomforest 0.619 0.600 0.639

TABLE V
MODEL PERFORMANCE METRICS, BETA = 0.5

Model Features selected Fl Score Precision Recall

XGBoost

bootstrap 0.597 1.000 0.426
boruta bootstrap 0.629 0.980 0.463
boruta 0.675 0.934 0.528
xgboost 0.651 0.931 0.500
randomforest 0.674 0.836 0.565

Random
Forest

xgboost 0.551 0.780 0.426
bootstrap 0.556 0.770 0.435
boruta 0.583 0.761 0.472
boruta bootstrap 0.580 0.750 0.472
randomforest 0.573 0.729 0.472

TABLE VI
MODEL PERFORMANCE METRICS, BETA = 2.0

Model Features selected Fl Score Precision Recall

Random
Forest

boruta bootstrap 0.505 0.350 0.907
boruta 0.511 0.357 0.898
bootstrap 0.501 0.348 0.899
randomforest 0.500 0.348 0.889

XGBoost

boruta bootstrap 0.689 0.574 0.861
bootstrap 0.679 0.560 0.861
boruta 0.709 0.622 0.824
randomforest 0.693 0.597 0.824
xgboost 0.725 0.659 0.806

Random
Forest

xgboost 0.587 0.474 0.769


