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Abstract: Scientific research on heart rate variability (HRV) biofeedback is burdened by certain
methodological issues, such as lack of consistent training quality and fidelity assessment or control
conditions that would mimic the intervention. In the present study, a novel sham HRV-biofeedback
training was proposed as a credible control condition, indistinguishable from the real training.
The Yield Efficiency of Training Index (YETI), a quantitative measure based on the spectral distribution
of heart rate during training, was suggested for training quality assessment. A training fidelity
criterion derived from a two-step classification process based on the average YETI index and its
standard deviation (YETISD) was suggested. We divided 57 young, healthy volunteers into two
groups, each subjected to 20 sessions of either real or sham HRV-biofeedback. Five standard HRV
measures (standard deviation of the NN (SDNN), root mean square of the standard deviation of the
NN (RMSSD), total power, low-frequency (LF), and high-frequency (HF) power) collected at baseline,
after 10 and 20 sessions were subjected to analysis of variance. Application of a training fidelity
criterion improved sample homogeneity, resulting in a substantial gain in effect sizes of the group
and training interactions for all considered HRV indices. Application of methodological amendments,
including proper control conditions (such as sham training) and quantitative assessment of training
quality and fidelity, substantially improves the analysis of training effects. Although presented on
the example of HRV-biofeedback, this approach should similarly benefit other behavioral training
procedures that interact with any of the many psychophysiological mechanisms in the human body.

Keywords: psychophysiology; heart rate variability biofeedback; training quality; training fidelity;
sham training control

1. Introduction
1.1. Heart Rate Variability (HRV)-Biofeedback

The links between general well-being and heart rate variability (HRV), defined as the
variability of time intervals between consecutive heartbeats, have been well-documented
in the scientific literature (for review, see: [1,2]). HRV is considered to be a robust and
reliable indicator of the general condition of the cardiovascular system. It serves as an
essential biomarker of physiological changes related to baroreflex and cardiac vagal ac-
tivity. Low variability of the heart rate suggests deficient vagal influence [3]. Moreover,
several central nervous system (CNS) areas involved in the perception of threat and safety
(including the amygdala and the medial prefrontal cortex) are also associated with HRV
control. Therefore, HRV parameters may index the degree of integration of perceptual,
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motor, interoceptive, and memory systems into one super-system, a gestalt representation
of situations and likely adaptive responses. These findings explain how HRV may reflect
essential bodily functions associated with adaptability and health [4]. Within such a frame-
work, HRV indices may be viewed not only as indicators of cardiological health but also
psychophysiological markers of general well-being. Indeed, high values of HRV have been
reported to represent psychological resilience and ability to cope with stress, while low
HRV has been associated with poor mental and somatic health [5].

Several factors increase HRV, such as positive mood and emotions [6], moderate levels
of physical exercise [7], healthy diet [8], humor [9], music [10], and meditation [11,12]. It is
possible to voluntarily increase HRV with the biofeedback technique in which biosignals
from the body are collected by a sensor and presented back to the trainee in a visual
or auditory form (usually visualized on a computer screen). During HRV-biofeedback
training, the pulse is assessed based on electrocardiography (ECG) or pulse plethysmog-
raphy (PPG) measurements, and variability of the heart rate (HR) is displayed as online
feedback. Presentation of the biofeedback signal allows for voluntary modification of HRV
fluctuations via breathing due to the respiratory sinus arrhythmia (RSA) phenomenon.
The RSA causes the heart rate to increase upon inhalation and decrease during exhala-
tion. In-phase synchronization of the respiratory HR fluctuations with the oscillations
caused by the sympathovagal control of heart rate and blood pressure results in a state
of cardio-vascular resonance. This state, also known as ‘coherence’, is characterized by
maximization of HRV [5]. Although individual resonance frequencies of breathing differ
slightly, the population average approximates 0.1 Hz, i.e., six breaths per minute [2].

The HRV-biofeedback training has been used in addition to psycho- and pharmacother-
apy, as well as a stand-alone alternative to more traditional types of treatment [13]. It has
been classified as an effective treatment for several disorders, with the best results achieved
for stress and anxiety [14,15]. Numerous papers have reported successful HRV-biofeedback
intervention in the case of a whole variety of somatic diseases and mental disorders, as well
as beneficial applications of this technique for healthy participants, improving cognitive
functioning and physical performance [16].

Several mechanisms have been proposed to underlie the regulatory effects of HRV-
biofeedback, such as mechanical stretching of the airways, anti-inflammatory influences,
relaxation, and meditative effects [2]. Recently, more complex mechanisms have been
suggested that combine physiological and psychological effects with neurodynamics. HRV-
biofeedback training affects brain functions at several levels of the CNS via bidirectional
vagal connections between the heart and the brain. Stabilization of autonomic reactivity
through baroreflex strengthening during training was proposed to translate directly on
blood pressure modulation and indirectly on other autonomically and emotionally medi-
ated reflexes [17]. Central plasticity is affected, leading to structural and functional changes,
further reducing sympathetic arousal and the hypothalamic–pituitary–adrenal (HPA) axis
activity [18,19]. Moreover, afferent information from the heart reaches higher brain regions,
such as the central autonomic network, the limbic system, the reticular activating system,
and the diffuse noradrenergic projection system [20]. Likewise, neuroimaging studies of
the medial visceromotor network, particularly the prefrontal and the anterior cingulate
cortex [21], point towards central effects. These structures are responsible for parasympa-
thetic neurocardiac regulation based on reciprocal brain–heart interconnections, as well
as being involved in the initiation and maintenance of adaptive control of emotions and
goal-directed behavior [21]. Last but not least, a most recently suggested modus operandi
was associated with changes in functional connectivity. This assumes that high-amplitude
physiological fluctuations stimulate oscillatory activity within the brain, strengthening
functional connectivity between affected regions [22].

1.2. Methodological Issues in HRV-Biofeedback Research

The importance of following standard procedures in HRV-related research has been
previously stressed in the literature. The Task Force of the European Society of Cardiology
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and the North American Society of Pacing and Electrophysiology laid grounds for stan-
dardized methodology, including nomenclature, definitions, methods of measurements,
and interpretation of parameters [23]. Quintana and colleagues have recommended guide-
lines regarding the reporting and planning of HRV studies, such as participant selection,
data collection, analysis and cleaning, and HRV calculation [24,25]. Shaffer and Ginsberg
have provided an overview of various HRV metrics and stressed the influence of measure-
ment context, including recording period length, subject age, and sex, on baseline HRV
values. Laborde and coworkers have discussed methodological aspects related to HRV in
psychophysiological research crucial for interpretation and cross-laboratory comparisons of
findings. These recommendations and practical advice concern such issues as experimental
designs, sample size, choice of HRV indices, confounding variables, standards for data
collection, analysis, and reporting [26]. Moreover, a broad range of factors affecting HRV
parameters by influencing cardiac vagal control has been identified and integrated into a
unifying conceptual framework based on the neurovisceral integration model by Laborde
and coauthors [27]. These are all important guidelines to follow while conducting research
focused on HRV-biofeedback.

On the other hand, despite a lot of research, various healthcare specialists still consider
biofeedback an experimental, investigational, and largely unproven form of treatment. Offi-
cial standards for research methodology in the field of biofeedback have existed since 2001,
established by a Task Force commissioned by the Association for Applied Psychophys-
iology and Biofeedback (AAPB) and the International Society for Neuronal Regulation
(ISNR) [3]. Nevertheless, biofeedback-related research still lacks the necessary methodolog-
ical consistency. Studies of HRV-biofeedback are not an exception to this rule. Establishing
a robust method to quantify training efficiency and fidelity and a reliable control condition
would arguably provide the most benefit for the field [3].

Different control group designs can be found in the HRV-biofeedback literature,
the most popular being no intervention or waiting list controls [28–33]. However, it is
well known that expectations, attention, motivation, and involvement play key roles in
achieving the effects of training. Passive control is much less cognitively demanding than
biofeedback training and overlooks any potential impact of the expectations towards an
intervention. Active control conditions, such as relaxation [34,35], neurofeedback [36,37],
and placebo video clips [38,39] control this effect only partially. Certain active control
conditions, including presentation of biofeedback without instructions concerning the
pace of breathing or maximization of HRV [40], slow breathing [41], and concentrative
passive feedback (HR displayed over 10-s intervals instead of real-time) [42], are more
demanding, but still not optimal. Perfect control conditions should provide identical
context as the intervention (external conditions, the attention and effort required from the
trainee, the attention received from the trainer, etc.) while differing in as few details as
possible. Ideally, the control condition does not introduce any treatment-specific processes
within the body and hence produces no potential therapeutic effects. A condition closest to
satisfying these requirements is the sham biofeedback approach, successfully applied in
neurofeedback and other biofeedback modalities [43–48]. Sham biofeedback setup mimics
the training conditions, with the only difference being the origin of the signal presented to
the trainee. Instead of their own feedback, the sham trainee is shown a pre-recorded or
random signal, which does not reflect their actual physiological state or ongoing processes.
One specific drawback of this method includes the ethical implications of making the
participants believe that they are being treated. Another potential problem concerns more
perceptive trainees who may discover the ongoing deception, raising a requirement for
sham biofeedback to be designed and administered very carefully.

To our best knowledge to date, sham biofeedback training in the HRV modality
has been applied only once in a study investigating the effects of HRV-biofeedback in
the treatment of major depression disorder [49]. The protocols for real and sham HRV-
biofeedback training were almost identical. Trainees in both groups were presented with
their own biofeedback signal and received the same instructions on the breathing technique
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and frequency of training sessions, including home training. The only difference concerned
the assigned respiration rates. In the HRV-biofeedback condition, the resonant frequency
was estimated between 4.5 and 6.5 breaths per minute. In the sham condition, respiration
rates were chosen from a range that did not target an increase in HRV, i.e., between 10 and
14 breaths per minute. Unfortunately, this is an isolated case, and the use of sham control
in HRV-biofeedback research still lacks popularity.

Moreover, the general majority of studies on HRV-biofeedback do not report the use of
any kind of criterion that would evaluate the fidelity of training, i.e., the extent to which it
was delivered as intended [50]. Therefore, it is not possible to clearly assess various aspects
of training performance, such as understanding and adherence to the instructions, pace and
degree of mastering the technique, and, most importantly, the success rate of individual
training sessions and the whole intervention. Without universal fidelity measures, it is
virtually impossible to compare contradictory results obtained in various studies or make
reliable conclusions about the efficiency of training. Similarly, without an explicit criterion,
assessment of home training appears problematic. It is commonly assessed based on journal
entries, with no possibility to control how the sessions were carried out, or even if at all.
An alternative approach relies on built-in assessment algorithms offered by commercial
training equipment. Unfortunately, the algorithms used by different companies vary,
while the mathematical formulas applied are often not disclosed. All that makes it very
difficult to understand and compare the results of training.

A distinct approach to this issue was presented in a study investigating several aspects
of the HRV-biofeedback technique and its application in certain disorders and the general
population [51,52], where a complex criterion called the Biofeedback Quality Index was
proposed. A more straightforward approach was applied in a study comparing the effects
of different breathing rates, where participants who did not meet the assigned requirements
based on breathing frequency were excluded from the per protocol analysis [53].

1.3. Aims of the Study and Hypotheses

Despite a substantial improvement in the controllability of HRV-biofeedback studies
published in recent years, most control conditions fail to account for the influence of expec-
tations and involvement. Moreover, when studying the effects of HRV-biofeedback training,
it appears crucial to assess the quality of the intervention properly. Since behavioral tech-
niques are acquired by practice, it is even more critical to evaluate the intervention’s fidelity,
understood as the methodological strategies used to monitor and enhance the reliability
and validity of behavioral interventions [54]. A well-designed fidelity criterion would
allow selecting only those participants who truly achieved the coherent/resonant state.
In this study, we would like to propose a novel approach aimed at solving these issues.
We present a sham paradigm for HRV-biofeedback training intended to mimic the actual
intervention accurately.

Moreover, we introduce a simple physiological index for training quality assessment
and propose its use as a fidelity criterion for more reliable results. We hypothesize that
(1) subjective reception of the sham HRV-biofeedback training by the participants does not
differ significantly from the real training. However, we expect that (2) the sham condition
does not cause significant changes in resting-state standard HRV parameters as opposed
to the real training. Furthermore, we suppose that (3) training quality assessment and
application of the fidelity criterion enhance the results’ clarity by increasing the effect
sizes of the analyses comparing the effects of real and sham (control) HRV-biofeedback
training. To investigate the dose effects of training, we decided to examine between-
group differences in training-related changes in resting-state HRV standard measures at
two time-points (after 10 and 20 sessions) in comparison to the pre-training baseline.
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2. Method
2.1. Participants

Participants were recruited among students and alumni of the Nicolaus Copernicus
University in Toruń as well as from the general working population of young adults.
A total of 65 participants enrolled in the study. 60 individuals completed the full training;
4 dropped out after psychometric testing and one after 5 training sessions. Due to signal
artifacts, 3 additional participants were excluded. The remaining 57 trainees (30 females,
i.e., 52.6%) aged 18–35 (mean = 22.38 ± 3.27) were assigned to one of the two training
conditions in a semi-random fashion intended to assure comparable distribution of sex,
age, education level, and study major in both groups; 28 participants (14 females, i.e.,
50%) aged 19–32 (mean = 22.75 ± 2.98) underwent the real HRV-biofeedback training;
29 volunteers (16 females, i.e., 55.2%) aged 18–35 (mean = 21.93 ± 3.56) were subjected to
the sham control treatment. The groups were comparable with respect to the distribution
of sex (χ(1) = 0.15, p = 0.696, Phi = −0.05), age (U = 312.5, p = 0.132), profession/study
major, and education level (χ(2) = 4.26, p = 0.119, Phi = 0.27).

Final analysis was carried out on the per protocol sample of 49 trainees, 26 in the real
HRV-biofeedback (14 females, i.e., 53.9%) age 19–32 (mean = 22.58 ± 3.02), and 23 in the
sham group (12 females, i.e., 52.2%) age 18–35 (mean = 21.70 ± 3.76). Group distributions
of sex (χ(1) = 0.01, p = 0.907, Phi = 0.02), age (U = 218.0, p = 0.101), and education level
(χ(2) = 2.585, p = 0.275, Phi = 0.225) were comparable.

Following the methodological guidelines for conducting HRV-related research [26],
several confounding variables influencing HRV were considered. Subsequent exclusion
criteria were verified by a declaration: practicing professional/extreme sports or dance
activities; practicing meditation techniques, yoga breathing exercises, biofeedback train-
ing; addictions; psychiatric, emotional, neurodevelopmental, cardiovascular, pulmonary,
and/or hormonal disorders; pregnancy. Additionally, habitual levels of alcohol and cof-
fee/tea consumption were controlled for. The participants were instructed to follow a
normal sleep routine and refrain from alcohol the day before the experiment, refrain from
caffeinated or drinks and meals for 2 h before the experiment, and use the bathroom before
the experiment if necessary, and rest in case of arriving in a rush. The study was approved
by the Bioethics Committee of the Nicolaus Copernicus University in Toruń at Collegium
Medicum in Bydgoszcz. Upon enrollment, each participant provided written informed
consent to take part in the study. The document mentioned that training would be carried
out in groups differing with respect to the level of feedback-based control and type of visu-
alization used. A monetary reward of 120 PLN (an equivalent of €30) was provided after
completing all stages of the study; however, the participants could resign from the study at
any given point without giving a specific reason. To compensate for being subjected to a
sham condition, the control group would be offered real HRV-biofeedback training.

2.2. HRV-Biofeedback Training Protocol

The HRV-biofeedback training protocol was based on previous work with respect to
the number and length of sessions (10 × 20 min) and general instructions adapted for the
purpose of this study (abridged and translated from [55]), as well as an introduction of
positive emotions [56]. Positive feelings, such as love, happiness, appreciation, or gratitude,
were found to improve communication between various systems in the body, thereby
increasing HRV [57–60]. The resonant frequency was not determined beforehand, as the
trainees were expected to spontaneously find out their individual pace of breathing during
the training. Sessions were scheduled on average, every 1 or 2 days. During the training,
the participants were seated in a semi-reclining position. The sessions took place in a
well-aerated, air-conditioned room with dimmed lights. The emWave Pro (HeartMath
Institute®, Boulder Creek, CA, USA) plethysmographic ear sensor and training software
were used for the biofeedback training.

The first training session began with a short theoretical introduction to the technique
and basic information on the physiological background of HRV-biofeedback. Subsequently,
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the emWave plethysmographic ear sensor and training software were introduced, while the
volunteers were presented their real-time PPG signal in the form of heart rate in beats
per minute plotted against time in seconds. Next, the trainees were instructed to pay
attention to the following five rules of training: (1) nasal inhalation, prolonged pursed-lips
exhalation, (2) diaphragmatic breathing (with instructions to check the way of breathing),
(3) natural depth of breathing (to avoid hyperventilation and light-headedness), (4) focus on
positive emotions (with instructions to evoke them), (5) improvement of cardiorespiratory
coherence (with an introduction to the concept). The state of coherence is a manifestation of
enhanced synchronization between breathing and heartbeat. Since it is increased by HRV-
biofeedback training, coherence was used in the emWave software as an index of training
fidelity, reflecting the level of wave-like regularity of the HRV signal [5]. The coherence
value was calculated as peak power (integrated power in a ±0.015 Hz window around the
tallest peak within the 0.04–0.24 Hz band) divided by the difference between total power
(integrated power within the 0–0.4 Hz band) and peak power, averaged across 64-sec
intervals every 5 s. It was presented at the bottom of the screen and visualized in real-time
by three color-coded bars in the bottom right corner—green for high, blue for medium,
and red for low coherence. The software offered four ‘challenge’ levels (‘low’, ‘medium’,
‘high’ and ‘highest’) of increasing difficulty, characterized by increased low/medium and
medium/high coherence thresholds. With increasing difficulty level, higher coherence
is necessary to move from the red bar to the blue one and eventually to the green one.
The participants were instructed to try to maintain high coherence for as long as possible.
Finally, the trainees were comforted not to worry too much about their progress since many
factors and aspects of everyday life may influence HRV while worrying and frustration
further decrease HRV and interfere with the training [57,58]. The participants were allowed
to try out the newly learned technique for a short while before the first session began.

2.2.1. Real HRV-Biofeedback

For the first few sessions of the real HRV-biofeedback training, the volunteers were
offered a pacer (an optional feature available in the software) set to 6 breaths per minute.
Since the pacer measured equal time for inhalation and exhalation, the trainees were not
meant to follow it closely but rather treat it as a rough estimate of the destined resonant
breathing pace, which is far slower than the usual breathing frequency of most people.
The pacer was removed later in the course of training when the trainees reported feeling
comfortable breathing in their own rhythm. The training progress was based on the
coherence values provided by the EmWave software. If progress was substantial (above
90% of high coherence in two subsequent sessions), the difficulty level was raised to make
room for further improvements. Some participants never reached ‘high’ difficulty, and no
trainee managed to transition to the ‘highest’ level.

2.2.2. Sham HRV-Biofeedback

The sham HRV-biofeedback method was designed to closely resemble real HRV-
biofeedback training, yet without the actual feedback signal. All participants received the
same introduction and instructions, regardless of the assigned group. However, just before
the beginning of the first session, sham trainees were informed that the training would
be performed using animations available in the emWave software. These visualizations
changed color depending on the current coherence level but were much less intuitive
than the HRV plot and did not facilitate following the accelerations and decelerations
in heart rhythm. The PPG signal was collected during the sham training, but it was not
displayed back to the trainees. Instead, they were presented with animated sessions pre-
recorded by the researchers. These sessions were prepared at different levels of difficulty
(‘low’, ‘medium’, and ‘high’) and varied with respect to training performance (based
on coherence value), which further separated them into subsets of ‘poor’ and ‘good’
training sessions. Sham sessions were presented to the participants in a semi-random order,
organized to resemble the course of real training. Each trainee started with sessions pre-
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recorded at the ‘low’ difficulty level, initially chosen randomly from a subset characterized
by low coherence values (‘poor’ performance), and after a few sessions drawn from a
subset with better results (‘good’ performance). The difficulty level was raised by the
researcher’s decision only after a ‘good’ sham training session (prevalent high coherence
in the presented recording). Sham training at the ‘medium’ difficulty and transition to
the ‘high’ level occurred in the same manner. However, some sham participants remained
at the ‘medium’ level until the end of their training, which was meant to parallel those
real HRV-biofeedback trainees who experienced more difficulties mastering the training
technique (Figure S1 in the Supplementary Materials).

2.3. Training Expectancy Questionnaire

In order to evaluate the credibility of the sham intervention, the Training Expectancy
Questionnaire (TEQ) was introduced. This self-report tool was constructed for the purpose
of this study, partially based on the Credibility/Expectancy Questionnaire (CEQ) [61].
CEQ was devised to assess placebo treatment by examining the trainees’ belief in treat-
ment, measuring the attitude toward rationale (i.e., credibility) and potential benefits (i.e.,
expectancy). Since all participants were healthy and did not require special treatment,
it was necessary to modify the original CEQ. TEQ consists of 10 questions; six answered
on a Likert-type scale, three open and one closed-end. The inquiry concerned subjective
effects of training on the participants’ health, physical, psychological, and emotional func-
tioning, their expectations and satisfaction with the training, ideas about the aim of the
study, and any possible added value of the additional 10 sessions (following the second
block of training). TEQ was administered after the 10th and 20th sessions to monitor
potential between-group differences in the subjective perception of training. Answers
to each question were analyzed separately. Descriptive answers were categorized into
nominal variables. Likert-type answers were treated as ordinal variables. The complete
questionnaire can be found in Table S1 in the Supplementary Materials.

2.4. Study Design and Timeline

The study was carried out at the Neurocognitive Lab located at the Centre for Modern
Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Poland, in an
artificially-lit, air-conditioned room. The study consisted of 6 major steps: (1) initial
questionnaires, (2) pre-test (baseline) psychophysiological measurements, (3) first block
of 10 HRV-biofeedback training sessions, (4) mid-test psychophysiological measurements,
(5) second block of 10 HRV-biofeedback training sessions, (6) post-test psychophysiological
measurements. The timeline of the study is presented as a schematic representation in
Figure 1.

Psychophysiological measurements consisted of psychometric and physiological data
collection. Psychometric tests measuring mood, anxiety, and perceived stress levels were
administered. Electroencephalography (EEG), ECG, and PPG biosignals were recorded
upon 10-min resting-state and three cognitive tasks. The cognitive, psychometric, and neu-
roimaging aspects will be discussed in a separate report. Blocks of biofeedback training
consisted of 10 sessions, each lasting precisely 20 min (for training methods see below),
carried out in about two weeks. The last session in each block, i.e., the 10th (S10) and 20th
session (S20), was performed with the EEG/ECG sensors and immediately followed by
subjective assessment of training with the TEQ questionnaire (see above) and psychophysi-
ological measurements (mid- and post-test, respectively).
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Figure 1. Schematic representation of the study timeline (top row) and measurements taken at
the subsequent steps (bottom row). Abbreviations S1 to S20 stand for heart rate variability (HRV)-
biofeedback training sessions nos. 1 to 20. Pulse plethysmography (PPG) signal was recorded during
HRV-biofeedback sessions. Gray boxes represent psychophysiological data collected at pre-test
(baseline), mid-test, and post-test, including resting-state electrocardiography (ECG) and subjective
assessment of the training (Training Expectancy Questionnaire, TEQ).

2.5. Quantitative Training Quality Assessment with Yield Efficiency of Training Index (YETI)

Development of the training quality index was rooted in the resonant breathing theory,
assuming the resonant frequency (RF) breathing rate ranges between 4 and 7 breaths
per minute for most humans [55]. This translates to a general RF band in the heart rate
frequency power spectrum ranging from 0.067 to 0.117 Hz. The maximum peak of the
spectrum should fall into this interval. Most of the power is expected to accumulate in
a 0.03 Hz-wide window around the peak frequency, expanding the general RF band by
±0.015 Hz into an interval between 0.052 and 0.132 Hz. The Yield Efficiency of Training
Index (YETI) was calculated as stated in Equation (1). It is expressed for each training
session as the percent ratio of power in the expanded general RF band (resonance frequency
power; RFP) to total power.

YETI(i) =
RFP(i)

Total Power(i)
× 100% (1)

The overall average measure of training quality (YETIAV) was calculated by averaging
the YETI values across all training sessions (i), where N is the total number of sessions as
stated in Equation (2).

YETIAV =
1
N

N

∑
i=1

YETI(i) =
1
N

N

∑
i=1

RFP(i)
Total Power(i)

× 100% (2)

Additionally, block-average YETI values were calculated separately for each 10-session
block as YETI10 (i = 1, 2, . . . , 10) and YETI20 (i = 11, 12, ..., 20), allowing for detection of
changes in training quality between the two blocks.

The standard deviation of YETI (YETISD) was calculated as the square root of variance
in RFP, as stated in Equation (3), where RFPm is the mean value of RFP across all training
sessions (i) and N is the total number of sessions.

YETISD = sqrt (
1
N

N

∑
i=1

(YETI(i)− YETIAV)
2) (3)
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Differences in block averages (∆YETI) were calculated as simple subtraction (Equation (4)).

∆YETI = YETI20 − YETI10 (4)

Maximum peak frequency (fPmax) was estimated as the frequency corresponding to
the extremum in the power spectrum and averaged across all 20 sessions.

2.6. Physiological Data Analysis

Data collected during HRV-biofeedback training sessions (Figure 2) and resting-state
psychophysiological measurements (Figure 4) were analyzed separately with different
methods and for distinct purposes.

2.6.1. HRV-Biofeedback Training Data

During the training sessions, the plethysmographic signal was recorded from the left
ear lobe using the emWave Pro ear sensor (HeartMath Institute®, Boulder Creek, CA, USA)
at a 370 Hz sampling rate. A schematic representation of PPG data processing is presented
in Figure 2. RR series (beat-to-beat intervals) was exported from emWave software and
analyzed in Spyder (Python). The RR intervals were interpolated using the cubic spline
method at the rate of 4 Hz. The FFT-based power spectrum was calculated using Welch’s
periodogram method with a window width of 256 s and 50% window overlap. For each
session of each participant, a spectral profile and values of YETI and fPmax were calculated.
The overall training performance of each participant was assessed by three parameters
calculated across all 20 sessions: YETIAV, YETISD, and average fPmax.

Figure 2. Schematic representation of the analytic pipeline applied to PPG data collected from each
participant during HRV-biofeedback training session.

2.6.2. YETI-Based Clustering and the Fidelity Criterion

Next, training fidelity was assessed in order to identify those participants who trained
per protocol. This per protocol subsample was selected based on their training performance
parameters, YETIAV and YETISD, using two-step cluster analysis (Figure 3). This method is
a hybrid approach combining a distance measure that separates groups (pre-clustering),
followed by a probabilistic approach that chooses the optimal subgroup model (clustering).
In the first step, data are pre-clustered in a sequential approach based on dense regions
defined in the analyzed attribute space. In the second step, pre-clusters are statistically
merged in a stepwise fashion up to the point when all belong to one cluster. The main
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advantages of this method include determining the number of clusters based on a statistical
measure of fit (Akaike information criterion (AIC) or Bayes information criterion (BIC))
instead of an arbitrary choice, using categorical and continuous variables simultaneously,
analyzing outliers, and handling large datasets. It is also one of the most reliable in terms
of the number of clusters detected, classification probability, and reproducibility [62]. Two-
step clustering was performed in SPSS statistical software version 25.0 (IBM Corp, Armonk,
NY, USA, 2012). Based on the similarity of training performance parameters, participants
were separated into two functional clusters: (1) those exhibiting and (2) those not exhibiting
cardiovascular resonance during biofeedback training sessions (Figure 3). Real biofeedback
trainees were expected to fall into the ‘resonance’ cluster and sham participants into the ‘no
resonance’ group. The misclustered individuals were rejected as not training per protocol.
The fidelity criterion demanded evoking a resonant state in the real biofeedback and not
evoking it in the sham condition.

Figure 3. Schematic representation of participant clustering and exclusion procedures based on training performance
parameters (YETIAV and YETISD). The participants are separated into two clusters based on similarity in the physiology of
their training performance, irrespectively of their originally assigned experimental condition (real vs. sham HRV-biofeedback
group, 28 and 29 trainees, respectively). Clustering results in two functional clusters, characterized by participants exhibiting
‘resonance’ and ‘no resonance’ upon training (32 and 25 trainees, respectively). In the last step, misclustered participants are
rejected, and only participants training per protocol remain in the per protocol real and sham HRV-biofeedback subsamples
(26 and 23 trainees, respectively).

2.6.3. Resting-State HRV Data

Resting-state electrocardiographic activity was recorded at a 256 Hz sampling rate
during pre-, mid-, and post-test using telemetric belts (Equivital Inc., New York, NY, USA).
A schematic representation of ECG resting-state data processing is presented in Figure 4.
The RR intervals were derived via internal software of the device and exported for analysis
in Kubios HRV v2.0 software (University of Eastern Finland). Artifacts were corrected
manually, and standard HRV indices were calculated using both time- and frequency-
domain methods. The following HRV measures were chosen to evaluate the effect of
training: standard deviation of the NN, i.e., normal RR intervals (SDNN), root mean
square of the standard deviation of the NN (RMSSD), the total power of the signal (TP;
0–0.4 Hz), as well as power in standard frequency bands: low-frequency (LF; 0.04–0.15 Hz)
and high-frequency (HF; 0.15–0.4 Hz). These indices were selected based on two criteria:
(1) popularity and recommendations in the HRV-biofeedback literature [23] and (2) cov-
erage of different aspects of human physiology [26]. Choosing the most commonly used
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parameters allows for broad cross-study comparisons. At the same time, each of the se-
lected parameters has a different physiological meaning. The SDNN reflects the cyclic
components responsible for HRV. The LF power provides information on both sympathetic
and vagal activity, as well as on the functioning of the baroreflex. RMSSD and HF power
both reflect the vagal tone; however, RMSSD is relatively free of respiratory influences and
therefore complements the results of the frequency analysis [26]. Total power encompasses
the complete variance of the signal across all the frequencies and provides a general picture
of the magnitude of the HRV fluctuations [23]. Prior to spectrum estimation, cubic spline
interpolation of RR series was performed at the rate of 4 Hz with 256 points in the frequency
domain. FFT was calculated using Welch’s periodogram method with a window width
of 256 s and 50% window overlap. To assure normal distributions, the HRV indices were
subjected to logarithmic transformation.

Figure 4. Schematic representation of the analytic pipeline applied to ECG data collected from each participant during
resting-state psychophysiological measurements.

2.7. Statistical Data Analysis

Statistical analysis was performed in SPSS statistical software version 25.0 (IBM Corp,
2012), statistical significance was assumed at p < 0.05. The effect size was calculated
as partial eta-square (ηp

2). The credibility of Sham HRV-biofeedback was analyzed by
comparing TEQ answers between real and sham HRV-biofeedback groups using the Chi-
square test. For each training condition (real and sham training), between-block changes
in YETI values (∆YETI) were calculated using the Wilcoxon rank test. Between-group
differences in training quality were calculated by comparing YETIAV, YETI10, YETI20, and
∆YETI values with the Mann–Whitney test. Baseline values of the HRV indices (from pre-
test resting-state recordings) were compared between the real and sham HRV-biofeedback
groups using the Mann–Whitney test.

Effects of the type of HRV-biofeedback training (real training vs. sham control) on
resting-state HRV were calculated with mixed-models analysis of variance (ANOVA),
separately for each HRV measure (lnSDNN, lnRMSSD, lnTP, lnLF, lnHF). Two models
were calculated for each parameter. The first model included the two extreme time-points
(pre-post) in order to investigate the effect of the whole training period (total effect of
20 sessions). The second model used all three time-points (pre-mid-post) to analyze the
dose-effect.

The effects of the type of training as described above were investigated on three
data sets: the original sample, the functional clusters, and the per protocol subsample.
Comparing the results obtained from the initial sample with those from the functional
clusters was intended to support the notion that based on their physiology, the misclus-
tered subjects should not belong to the group they were assigned to, but rather the other
condition. Results obtained from the initial sample and from the per protocol subsample
were compared in order to show the benefits of applying the fidelity criterion. To ad-
dress differences in sample sizes, bias-corrected and accelerated (BCa) bootstrap intervals
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were calculated for all simple effects tests using random sampling bootstrapping based
on 10,000 samples. Inflation of the alpha error due to the family-wise error rate in the
post-hoc analysis was addressed by applying the Bonferroni correction. As advised by
Armstrong [63], no correction was applied against the experiment-wise error rate due
to the following circumstances: the study was restricted to a small number of planned
comparisons, the results of the individual tests were of main interest (instead of a common
null hypothesis), and the investigated dependent variables were not independent of each
other (as all described cardiovascular functioning). Moreover, the focus of this study was
much more heavily placed on differences in results between data samples rather than on
the results themselves. At the same time, due to limitations presented by conclusions
drawn based on p-values [64], increased interest was invested in comparing effect sizes and
test power. Nevertheless, for reasons of methodological scrutiny, the Benjamini–Hochberg
procedure [65] was applied to the results of the interaction between training and group.
The critical value was calculated for a false discovery rate (FDR) of 0.05 and 0.1; significant
interactions denoted by two asterisks (**) and one asterisk (*), respectively (Table 2).

3. Results
3.1. Clustering of Training Data and the Fidelity Criterion

The differences in training quality between the two experimental groups were depicted
by plotting the individual values of YETIAV against the maximum peak frequency (fPmax)
averaged across the 20 sessions. The real HRV-biofeedback group exhibits higher YETIAV
and fPmax located within the RF band, while sham trainees are characterized by lower
YETIAV values and fPmax often out of the RF band (Figure 5a). Another useful auxiliary
measure is the standard deviation of YETI (YETISD), showing changes in YETI values over
time, similar in interpretation to a learning parameter. Plotting the individual values of
YETIAV against YETISD shows that the real HRV-biofeedback trainees improved during the
course of training. At the same time, the sham biofeedback group exhibited stable (and
low) values of YETI across all 20 sessions (Figure 5b).

In order to separate successful and failed training (and control) a two-step clustering
based on YETIAV and YETISD values was performed. The majority of real HRV-biofeedback
trainees were classified into the ‘resonance’ cluster (26 out of 28, 92.86%), while most
volunteers subjected to sham training—into the ‘no resonance’ group (23 out of 29, 79.31%).
A total of 8 participants were misclustered (i.e., assigned to a different cluster than the
rest of their original group); 2 from the real HRV-biofeedback group, and 6 sham trainees
(Figure 5c). Their data were excluded from the per protocol subsample.
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Figure 5. Scatterplots of YETIAV values against fPmax (a) and YETISD (b,c). Plots (a,b) show the
original data set (original sample). Markers represent the training conditions: real (blue dots) and
sham (salmon exes) HRV-biofeedback. Plot (c) depicts the results of dividing the data set into
functional clusters. The original sample training data, i.e., real biofeedback (dots) and sham (exes)
were divided into 2 clusters: resonance (blue) and no-resonance (salmon). Misclustered participants
(salmon dots and blue exes; circles around markers) were excluded from the per protocol subsample.
The border between the two clusters is defined by the following equation: y = −0.25x + 20.81.

3.2. Credibility of Sham HRV-Biofeedback

After the first 10 sessions, the real HRV-biofeedback trainees reported an influ-
ence on their physical functioning significantly more frequently than the sham control
(Nreal = 9 (32.1%), Nsham = 3 (1.3%); χ(1) = 4.073 p = 0.044, ϕ = −0.267), while the opposite
was observed for feeling tired during the training (Nreal = 1 (3.6%), Nsham = 7 (24.1%);
χ(1) = 4.994, p = 0.025, ϕ = 0.296). After completing the whole training (20 sessions) the
only significant difference concerned significantly more frequent reports of an influence on
mental functioning in the HRV-biofeedback group (Nreal = 20 (74.1%), Nsham = 13 (44.8%);
χ(1) = 4.941, p = 0.026, ϕ = −0.297).

In the per protocol subsample, after the first 10 sessions no significant differences
were noted. The difference in perceived influence on mental functioning after 20 ses-
sions remained statistically significant (Nreal = 20 (8.0%), Nsham = 9 (39.1%); (χ(1) = 8.369,
p = 0.004, ϕ = −0.418). Moreover, participants involved in the sham training significantly
less frequently admitted any additional benefit of the extra 10 sessions (Nreal = 15 (88.2%),
Nsham = 10 (5.0%); χ(1) = 6.130, p = 0.013, ϕ = −0.407).
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3.3. Quantitative Measures of Training

For each training condition (real and sham training), between-block changes in YETI
values (∆YETI) were non-significant, both in the original sample (Zreal = −0.71, p = 0.480;
Zsham = −0.44, p = 0.658), and in the per protocol subsample (Zreal = −0.52, p = 0.603;
Zsham = −0.15, p = 0.879). Between-group comparison of YETI values averaged across
blocks (YETI10 and YETI20) and the whole training period (YETIAV) revealed significant
differences, while values of ∆YETI did not differ between groups. Similar results were
obtained for the original sample and the per protocol subsample (Table 1).

Table 1. Group average (M) with standard deviation (sd) of YETIAV, YETI10, YETI20, and ∆YETI for both conditions (real
and sham training) and results of a Mann-Whitney test between-group comparison (U- and p-value) calculated for the
original sample and for the per protocol subsample.

Original Sample Per Protocol Subsample

Mreal (sd) Msham (sd) U p Mreal (sd) Msham (sd) U p

YETIAV 58.67 (1.33) 28.6 (11.55) 33.0 <0.001 6.10 (9.20) 24.33 (7.91) 2.0 <0.001
YETI10 57.93 (11.54) 28.02 (12.19) 44.0 <0.001 59.41 (1.52) 24.35 (8.38) 7.0 <0.001
YETI20 59.17 (11.51) 28.86 (12.09) 37.0 <0.001 6.54 (1.75) 24.45 (7.92) 2.0 <0.001
∆YETI 1.23 (9.18) 0.84 (8.59) 385.0 0.737 1.12 (9.51) 0.09 (3.13) 279.0 0.689

Spectral profiles of the PPG-derived RR signal collected upon training differed be-
tween the real and sham HRV-biofeedback conditions. For most of the real biofeedback
trainees, the power spectrum density (PSD) of the signal was concentrated in a narrow
band around the maximum peak. The peak frequency was consistent across the 20 sessions
(Figure 6a,b). The majority of the sham control group exhibited a lack of PSD concentration
and peak frequency changing from session to session (Figure 6d,e). A few participants
showed profiles atypical for the condition they had been initially assigned to. Displaying a
pattern characteristic for the opposite condition indicated instances of failure in adherence
to the training or control conditions (Figure 6c,f, respectively), i.e., low fidelity of training.

Figure 6. Sets of 20 spectral profiles (one line for each session) for 6 participants initially assigned to the real (a–c) and
sham (d–f) HRV-biofeedback training. The dots mark the maximum peak for each profile. Notice the difference in power
amplitude (scale of power spectrum density; PSD) and concentration/dispersion of individual peak frequencies between
graphs, which differentiate training per protocol (high fidelity (a,b)) from low fidelity training (c), and proper control (d,e)
from failed (low fidelity) sham condition (f).
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3.4. Effects of Training

No significant baseline differences between real and sham HRV-biofeedback for
resting-state SDNN, RMSSD, TP, LF, and HF were found, either in the original sample
(p-values equal to 0.330, 0.231, 0.434, 0.962, and 0.160, respectively) or in the per protocol
subsample (p-values equal to 0.100, 0.060, 0.144, 0.389, and 0.078, respectively; for full
results see Table S2 in the Supplementary Materials).

The effects of training were analyzed with two models. The total effect of the full
training period was calculated on data collected before and after all 20 sessions (pre-post).
The dose-effect of training was investigated by comparing data from 3 time-points (pre-,
mid-, and post-test). Both models were tested on (a) the original sample, (b) the functional
clusters, and (c) the per protocol subsample. The interaction effect between group and
training for each of the aforementioned conditions is presented in Table 2.

Table 2. Results of mixed-models analysis of variance (ANOVA) effect of interaction between group (true vs. sham HRV-
biofeedback) and training (pre-post and pre-mid-post) calculated on (1) the original sample, (2) the functional clusters,
and (3) the per protocol subsample for lnSDNN, lnRMSSD, lnTP, lnLF and lnHF (for 2 timepoints dfs = (1,55), dfpp = (1,47);
for 3 timepoints dfs = (2,110), dfpp = (2,94)).

H
R

V
In

de
x Inter-Action

Effects

Original Sample Functional Cluster Per Protocol Subsample

F(dfs) p ηp
2 pow F(dfs) p ηp

2 pow F(dfpp) p ηp
2 pow

ln
SD

N
N pre-post 4.50 0.038 * 0.08 0.55 7.10 0.010 ** 0.11 0.74 6.56 0.014 ** 0.12 0.71

pre-mid-post 2.05 0.133 0.04 0.42 3.29 0.041 * 0.06 0.61 2.79 0.066 * 0.06 0.54

ln
R

M
SS

D pre-post 2.79 0.101 0.05 0.38 6.88 0.011 ** 0.11 0.73 5.67 0.021 ** 0.11 0.65

pre-mid-post 1.61 0.205 0.03 0.33 3.39 0.037 * 0.06 0.63 2.70 0.072 * 0.05 0.52

ln
TP

pre-post 5.64 0.021 * 0.09 0.65 8.01 0.006 ** 0.13 0.79 7.75 0.008 ** 0.14 0.78

pre-mid-post 2.76 0.068 0.05 0.54 4.19 0.018 ** 0.07 0.73 3.68 0.029 * 0.07 0.66

ln
LF

pre-post 2.45 0.123 0.04 0.34 7.78 0.007 ** 0.12 0.78 5.74 0.021 ** 0.11 0.65

pre-mid-post 1.70 0.188 0.03 0.35 4.68 0.011 ** 0.08 0.78 3.48 0.035 * 0.07 0.64

ln
H

F pre-post 4.75 0.034 * 0.08 0.57 5.03 0.029 ** 0.08 0.60 6.07 0.017 ** 0.11 0.68

pre-mid-post 2.81 0.065 0.05 0.54 2.74 0.069 * 0.05 0.53 3.14 0.048 * 0.06 0.59

** interaction significant following the Benjamini–Hochberg correction at FDR = 0.05. * interaction significant following the Benjamini–
Hochberg correction at FDR = 0.1.

3.4.1. Total Effect

Results of the pre-post analysis showed no significant between-subject differences (no
main effect of the group) for all five HRV indices in all samples.

Within-subject analysis on the original sample revealed a significant main effect
of training for lnSDNN, lnRMSSD, lnTP, lnLF, and approaching significance for lnHF.
The interaction effect was significant for lnSDNN (F(1,55) = 4.50, p = 0.038, ηp

2 = 0.08,
pow = 0.55), lnTP (F(1,55) = 5.64, p = 0.021, ηp

2 = 0.09, pow = 0.65), and lnHF (F(1,55) = 4.75,
p = 0.034, ηp

2 = 0.08, pow = 0.57). Post-hoc analysis of the interaction effects for lnRMSSD,
lnTP, lnLF, and lnHF revealed that the effect of training was statistically significant only in
the real biofeedback group (p-values equal to 0.003, <0.001, 0.020, and 0.010, respectively),
as opposed to the sham control (p-values equal to 0.359, 0.093, 0.421, and 0.814, respectively).
Only for lnSDNN the results were significant in both groups (p-value equal 0.002 for real,
and 0.027 for sham HRV training).

Within-subject analysis repeated on functional clusters yielded similar main effects
of training but stronger interaction effects. For all considered HRV indices, higher ηp

2,
lower p-value, increased F-value and power were observed, and all interactions reached
statistical significance.

Within-subject analysis repeated on the per protocol subsample showed a significant
main effect of training for lnSDNN, lnRMSSD and lnTP, and approaching significance for
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lnLF. Interaction effects were present for all indices, again stronger than for the original sam-
ple with higher ηp

2, lower p-value, increased F-value, and power (lnSDNN: F(1,47) = 6.56,
p = 0.014, ηp

2 = 0.12, pow = 0.71; lnRMSSD: F(1,47) = 5.67, p = 0.021, ηp
2 = 0.11, pow = 0.65;

lnTP: F(1,47) = 7.75, p = 0.008, ηp
2 = 0.14, pow = 0.78; lnLF: F(1,47) = 5.74, p = 0.021,

ηp
2 = 0.11, pow = 0.65; lnHF: F(1,47) = 6.07, p = 0.017, ηp

2 = 0.11, pow = 0.68). In the per
protocol subsample differences in group means increased for all parameters (lnSDNN,
lnRMSSD, lnTP, lnLF, and lnHF), and significant effects of training were observed only
in the real biofeedback condition (p-values equal to 0.002, 0.003, 0.001, 0.021, and 0.010,
respectively), in contrast to the sham control (p-values equal to 0.415, 0.932, 0.332, 0.597,
and 0.535, respectively).

Detailed results of ANOVA and post-hoc analysis are presented in the Supplementary
Materials in Tables S3 and S4, respectively.

3.4.2. Dose Effect

Data analysis at 3 time-points (pre-mid-post) revealed no significant main effect of
group for any of the analyzed HRV measures in any data set.

The main effect of training was significant or approaching significance across all data
sets for all HRV indices except lnHF.

The interaction effect in the original sample was approaching significance for lnTP
(F(2,110) = 2.76; p = 0.07; ηp

2 = 0.05; pow = 0.535) and lnHF (F(2,110) = 2.81; p = 0.065;
ηp

2 = 0.05; pow= 0.54) and insignificant for lnSDNN, lnRMSSD and lnLF. Post-hoc analysis
showed significant increases between pre-test and mid-test for lnSDNN and lnTP both
in the real biofeedback (p = 0.021 and 0.019, respectively) and sham group (p = 0.006 and
0.023, respectively).

The interaction effect in the functional clusters showed significant interactions for
lnSDNN, lnTP, lnLF, while for lnHF the relation remained approaching significance.

The interaction effect in the per protocol subsample was significant for lnTP (F(2,94) = 3.68;
p = 0.029; ηp

2 = 0.07; pow = 0.66), lnLF (F(2,94) = 3.48; p = 0.035; ηp
2 = 0.07; pow = 0.64)

and lnHF (F(2,94) = 3.14; p = 0.048; ηp
2 = 0.06; pow = 0.59), and approaching significance

for lnSDNN (F(2,94) = 2.79; p = 0.066; ηp
2 = 0.06; pow = 0.54) and lnRMSSD (F(2,94) = 2.70;

p = 0.072; ηp
2 = 0.05; pow = 0.52). Post-hoc analysis revealed an increase in lnSDNN

and lnTP values from pre-test to mid-test in the real biofeedback (p = 0.028 and 0.030,
respectively) and sham group (p = 0.019 and 0.043, respectively). Changes for lnLF and
lnHP approached significance. Values of lnLF increased between pre- and mid-test in the
real training group (p = 0.067), while both lnLF and lnHF decreased between mid- and
post-test in the sham control (p = 0.060 and 0.065, respectively).

Graphs illustrating these findings are presented in Figure 7. Detailed results of
ANOVA and post-hoc analysis are shown in the Supplementary Materials in Tables S5 and
S6, respectively.
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Figure 7. Effects of real (blue) and sham (salmon) HRV-biofeedback training on HRV parameters:
lnSDNN (a,f), lnRMSSD (b,g), lnTP (c,h) lnLF (d,i) and lnHF (e,j). Real HRV-biofeedback (blue) is
compared to the novel sham control (salmon) in the original sample (left column) and the per protocol
subsample (right column) at 3 time-points: before the intervention (pre-test), after 1 block of training,
i.e., 10 sessions (mid-test), and after 2 blocks, i.e., 20 sessions (post-test). Error bars show standard
error of the mean (SEM).



Sensors 2021, 21, 3670 18 of 26

4. Discussion

In this study, two practical and, in our opinion, vital problems were tackled by
applying novel tools. The sham HRV-biofeedback training is a good control condition, sub-
jectively indistinguishable from the real training, yet it does not improve resting-state HRV,
as the real training does. Assessment of training fidelity based on YETI, an objective index
of training quality, allowed for a more specific and sensitive analysis of the collected data
with respect to a general effect of training, expressed by increased effect size. Comparison
of data collected after 10 and 20 sessions revealed a dose-effect of training. We conclude by
discussing the limitations of our study approach.

4.1. Novel Sham HRV-Biofeedback Training

In this study, a novel sham training protocol was introduced as a control condition for
the HRV-biofeedback method. To the best of our knowledge, no sham HRV-biofeedback
training involving fake signal being fed back to the participants has been conducted
up to date. The control conditions closest to our design were normal-pace breathing
biofeedback [66] and training at respiration rates not affecting HRV (10–14 breaths per
minute) [49]. Nevertheless, resonant effects of HRV frequencies harmonic to 0.1 Hz, such as
0.2 Hz, present during natural breathing, have not been specifically investigated. Moreover,
paced respiration training appears to influence HRV measures irrespective of breathing
frequency [66]. Our sham feedback signaled to the participants the need for an adjustment
in their breathing frequency at random moments, preventing regular respiratory patterns
from being maintained for prolonged periods of time.

Apart from the feedback signal source, another major difference between real and
sham HRV-biofeedback was the type of visual stimuli used to present the biofeedback
information. This difference in visual feedback is a minor yet necessary drawback since the
two conditions had different training requirements. A linear HRV plot was shown during
the real training, as it was easy to understand and follow. Unfortunately, the presentation
of a pre-recorded HRV signal in this form to the sham trainees allowed them to synchronize
their breathing with the presented feedback, resulting in unwanted training. On the other
hand, color-coded simple animations displayed in the sham condition were less straight-
forward and did not suggest any breathing pattern. However, training with animations
was not intuitive enough for the real biofeedback practice, causing problems in mastering
the technique (pilot study data, unpublished). Therefore, we decided to apply different
animation types in the two groups that would be most suitable for the purpose intended.

Although the two experimental conditions were almost identical in design, the credi-
bility of the sham control was assessed. Subjective reception of both kinds of training was
investigated with the Training Expectancy Questionnaire, applied at the mid- and post-test
(after 10 and 20 sessions, respectively). Comparing the TEQ results between the two condi-
tions revealed similar experiences of the training itself and analogous perception regarding
the subjective effects of training on health, physical, mental, and emotional functioning.
Presented levels of awareness about the study and experimental hypotheses were also com-
parable between conditions. The significant difference found in the per protocol subsample
concerned the assessment of the additional 10 sessions, which were perceived as beneficial
significantly more often by real HRV-biofeedback trainees. This finding most likely reflects
the usefulness of proper cues in the real biofeedback, allowing for improvement and learn-
ing, and the inconsistency of the sham signal, causing certain hardship in interpretation and
preventing the subject from acquiring an ability to self-regulate breathing at any distinct
pace.

4.2. Training Quality and Applicability of the YETI Index

Although the two types of training were almost identical in subjective reception,
the two groups exhibited significant differences in training quality. The spectral profiles
derived from the training sessions showed distinct maximum peaks within the resonance
frequency band (0.067–0.117 Hz) during real HRV-biofeedback sessions, while power



Sensors 2021, 21, 3670 19 of 26

was much more evenly spread across all physiological frequencies in the sham condition
(Figure 6). Quantitative comparison of these differences was possible thanks to the YETI
index. Its values averaged across all sessions (YETIAV) were significantly different between
groups already after the first block of training, and this difference further increased after
the second block. Plotting the values of YETIAV against the average maximum peak (fPmax)
for each participant visualized individual proportions of power within the RF band vs.
the most common frequency present along the training. As expected, real biofeedback
training was characterized by higher values of YETIAV and fPmax within the RF band,
while sham training exhibited lower YETIAV values and fPmax spread across a wide range
of frequencies, rarely within the RF band (Figure 5a). However, these two parameters
are both based on the concept of the RF band, and as such, carry information that is
correlated and redundant for clustering purposes. Across-session standard deviation of
YETI values (YETISD), on the other hand, adds information on the change in training
quality. Small variations in YETI reveal relatively stable performance, while large YETISD
may be used as an approximation of learning (Figure 5b).

The two conditions (real vs. sham training) were separated accurately with the two-
step clustering method based on YETIAV and YETISD (Figure 5c). Analysis of the spectral
profiles shows that the observed cases of misclustering were justified and reasonable.
Real HRV-biofeedback trainees assigned to the ‘no resonance’ cluster exhibited low power
of the signal and/or shifted peak maxima (Figure 6c), similar to those observed during
sham sessions. On the other hand, sham participants clustered as ‘resonance’ condition
displayed high power of the signal and clear, stable peaks within the RFB (Figure 6f), typical
for real HRV-biofeedback training. The physiology of these misclustered participants did
not behave in a predicted manner, revealing a low fidelity of training. It is known that
biofeedback techniques are challenging to some people [55]. Nevertheless, when discussing
specific physiological effects of an intervention, only results of high-fidelity training should
be considered [50]. Cases of resonance training in the sham group most probably arose
from indifference to the false feedback occurring in participants who relied more on their
internal perception of breathing than on the presented visualization. As reported previously,
physiological effects of slow-pace breathing are almost identical, only slightly weaker than
those of HRV-biofeedback [41].

For these reasons, the misclustered trainees were not included in the per protocol
analysis. Clustering results were further supported by between-group analysis of five HRV
indices (SDNN, RMSSD, TP, LF, and HF). In comparison to the original groups as assigned,
ANOVA results obtained from the functional clusters and per protocol subsample showed
increased effect sizes, significance, and test power.

4.3. Quantitative Effects of Training

The total effect of the complete training period, analyzed by comparing changes in
resting-state HRV from baseline (pre-test) to post-test, differentiated real HRV-biofeedback
training from the novel sham control condition. For all five HRV measures used (SDNN,
RMSSD, TP, LF, and HF), most of the effect sizes (ηp

2) were small or medium. It is likely
that the rather small improvements in HRV could be attributed to the ceiling effect. In a ho-
mogenous group of educated individuals, it could be difficult to perceive HRV changes [67].
Moreover, for young, healthy adults, there might be little room for improvement in psy-
chophysiological functioning [68]. Another probable cause could be the influence of
individual differences in response to [15]. These may stem from age, race, and sex dif-
ferences, or the impact of baseline HRV, among other factors [69]. The interaction effect
was attenuated for l nHF due to baseline differences between groups (main group effect).
However, the impact of training on HRV was still noticeable, as the value of lnHF increased
at post-test in the real biofeedback group.

With respect to the original groups, the analysis performed on the YETI-based func-
tional clusters and the per protocol subsample showed stronger effects of the type of
training. Interaction analysis yielded larger effect sizes (ηp

2), F-values, and test power.
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The p-values were lower, often resulting in a situation where a test that was non-significant
in the original sample reached significance in the functional clusters and the per protocol
subsample (Tables S3, S4 and S6). It is very noteworthy that the highest values were ob-
served for the functional cluster, suggesting that, indeed, the mis-categorized participants
were clustered correctly by the algorithm, and their physiology behaved in line with the
training condition that they were not assigned to.

The literature suggests that four sessions are sufficient to observe the effects of HRV-
biofeedback training [70]. We analyzed the dose-effect of training in a more detailed
approach, considering data from three time-points (Figure 7). The interaction effects of
group and training were maintained. However, the first 10 sessions resulted in similar
effects in both groups. In contrast, the second block of training resulted in an increase of
HRV in the real biofeedback group and a slight decrease in the sham group. The initial
improvement of HRV measures in the control condition could not be attributed to car-
diovascular resonance since the sham group achieved significantly lower block-average
YETI values (YETI10 and YETI20) than the real biofeedback group. Moreover, for both
conditions, block-average YETI values did not differ between blocks. Concentrative and
meditation-like effects [71,72] and positive emotions [56] could influence the levels of HRV
in the initial phase and act similarly to HRV-biofeedback concerning stress reduction [73].
Furthermore, HRV can be influenced by the placebo effect, as it is known that autonomic
recovery can be enhanced by a placebo suggestion [74] and cognitive expectancy [75].
Therefore, an influence of the placebo effect caused by sham training is a very likely expla-
nation for improvements of HRV values in the control group at the initial stages of training.
Subsequently, a decrease of all HRV indices in the direction of baseline was observed after
the second block of training for the sham group. This drop in HRV could reflect a loss of
interest, habituation, or frustration with the training [57,58]. A parallel effect was observed
in subjective measures of the training reported on the TEQ questionnaire. The initial 10 ses-
sions appear to be experienced by both groups in a similar way, but after the second block
of intervention real biofeedback trainees report an influence of HRV-biofeedback on their
mental functioning significantly more often, which might point to perceived psychological
benefits of the training.

4.4. Beyond HRV-Biofeedback

Although this study was conducted in the HRV-biofeedback paradigm, we believe that
the topics presented in our manuscript could be of great importance to the whole biofeed-
back community and beyond. Methodological problems tackled in this study—introducing
an appropriate control condition that would address the placebo effect, controlling the
effects of training in a quantitative manner, and assessing treatment fidelity—are crucial
and central to any behavioral intervention. Sham control is gaining popularity not only
in biofeedback research, where it was applied in studies using neurofeedback [43,46] or
biofeedback based on electromyography (EMG) [76,77]. Recently, sham treatments were
reported for repetitive transcranial magnetic stimulation (rTMS) [78] and mindfulness
meditation [79–81]. Moreover, a psychophysiological aspect is involved in most behavioral
treatments, such as changes to HR and HRV upon mindfulness [81] and heartfulness [82]
meditation training. Various types of meditation may evoke different effects on the cardio-
vascular system [83]. Moreover, different effects of concentration meditation depend on
individual maximal frequency peaks achieved by each participant [84]. Therefore, it would
be feasible to quantify the results of these types of intervention based on physiological
indices, allowing for more effective application and guidance during training.

YETI or similar training quality indices based on other physiological measures could
be very helpful for quantitative quality control upon application of these techniques. Like-
wise, assessing the fidelity of an intervention is highly recommended, yet often very
heterogeneous, as in the case of behaviour change interventions that promote physical
activity [85]. Robust systems of fidelity evaluation are needed for complex behaviour
change interventions to evaluate intervention integrity [86]. The topic was highly crucial
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and received the attention of the Treatment Fidelity Workgroup of the National Institutes
of Health Behavior Change Consortium. They developed a comprehensive model of
treatment fidelity covering five factors of treatment: study design, providers, delivery,
receipt, and enactment skills [87]. This model was tested in a case example study of an
exercise intervention where fidelity assessment was based on observation and self-report;
nevertheless, evidence of treatment fidelity to training was not quantified [54]. The com-
putational methods proposed in our manuscript provide a means to evaluate treatment
fidelity based on measurements and hard data. Implementation of this methodology for
behavioral interventions other than biofeedback could substantially aid the development
and application of these techniques.

4.5. Limitations and Further Studies

Given a large number of analyses and thus increased risk of alpha error, the main
limitation of this study was a relatively small sample size. This was partially addressed
by performing bootstrapping on the ANOVA tests. Moreover, the sample was very homo-
geneous and, therefore, the results should be extrapolated to other age and ethnic groups
very carefully.

Although no significant differences in baseline HRV levels were found between the
two groups, a main effect of the group overshadowed the influence of the type of training
on the HF parameter (non-significant interaction effect). During the training sessions and
in the resting-state condition, breathing was not controlled for, excluding the possibility to
correct the HRV parameters for respiration. For this reason, the existence of group-wise
variations in resting-state respiration patterns and their possible influence on differences
in HRV parameters cannot be excluded. Further studies should be carried out on groups
with very similar baseline HRV levels and control for respiratory parameters. Moreover,
a few confounding factors suggested by Laborde and colleagues [26] were not controlled
for, including weight, height, and waist-to-hip ratio, oral contraceptive intake for female
participants, as well as intense physical training the day before the experiment, potentially
influencing the experimental results. Furthermore, the addition of a no-intervention group
could help to confirm the probable influence of the placebo effect at the initial stage of
sham training.

The aim of this study was to propose solutions to certain methodological problems
present in the field. This report highlights the necessity to control training quality in
HRV-biofeedback research, as well as attempts to provide a reliable index of training
fidelity. In the present form, the applicability of the presented method is limited due
to its dependence on a particular dataset. However, the authors plan to apply machine
learning classification algorithms to improve their method further to make it robust and
easily applicable. The proposed novel sham HRV-biofeedback appears to be a generally
good control condition, although a few trainees presented characteristics of cardiovascular
resonance upon sham training. Nevertheless, using other control conditions does not
exclude similar behavior—participants may evoke cardiovascular resonance spontaneously
and unconsciously during any type of control intervention. This could happen for various
reasons, such as induction of deep relaxation or concentration approaching meditative
states, self-invoked resonance breathing, etc. Therefore, it appears crucial to apply a
training fidelity index not only to real biofeedback training but also to control conditions.

In order to address the potential influence of individual differences on the effects
of training, further analysis will take into consideration additional confounding factors,
such as sex, temperamental features, and baseline values of anxiety, mood, and HRV.
Moreover, future studies will explore the interactions between HRV and brain activity in an
attempt to shed some light on the mechanisms behind the effects of HRV-biofeedback training.

Last but not least, it would be beneficial to apply the principle of quantitative physiology-
based training quality index and fidelity assessment presented in this study to different
biofeedback modalities and other types of behavioral training, such as mindfulness meditation.
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5. Conclusions

The research field of HRV-biofeedback needs clear methodological standards regard-
ing training protocols, equipment, session timing (duration, frequency, number, etc.),
standard measures taken, and HRV indices analyzed. The novel sham HRV-biofeedback
training condition proposed in this study appears to be a credible control, not distinguish-
able in reception as a form of training, yet addressing the possible placebo effect. The YETI
index is useful to assess the individual quality of training and fidelity of intervention (both
real HRV-biofeedback training and sham control). Participant selection according to the
fidelity criterion based on the average YETI index and its standard deviation (YETISD)
permits analysis to be conducted on more homogeneous data. Application of YETI allows
for more informed description and examination of collected data and yields results of
higher specificity and reliability, reflected by increased effect size and improved statistical
significance. Any behavioral treatment affecting human psychophysiology would most
likely benefit from introducing a quantitative, physiology-based index and controlling
training quality and fidelity. Therefore, the proposed novel tools not only complete and
improve the existing experimental methodology of HRV-biofeedback, but reach beyond
this field into the realm of behavioral interventions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21113670/s1: HRV-Biofeedback Training Manual; Figure S1: Schematic representation of
the semi-random selection of pre-recorded sham sessions; Table S1 Training Expectancy Question-
naire (TEQ); Table S2 Baseline mean (M) and standard deviation (sd) values of logarithmized HRV
parameters (SDNN, RMSSD, TP, LF, and HF) collected at pre-test for both true and sham biofeedback
trainees and the results of a Mann-Whitney test between-group comparison (U- and p-value); Table
S3 Main effects of group (true vs. sham HRV-biofeedback) and training (pre-post), and the interaction
effect (group*training) in the mixed-models ANOVA calculated on the whole sample, the functional
clusters, and the per protocol subsample for lnSDNN, lnRMSSD, lnTP, lnLF and lnHF (dfs = (1,55),
dfpp = (1,47)); Table S4 Post-hoc analysis of the main effects of group (true vs. sham HRV-biofeedback)
and training (pre-post), and the interaction effect (group*training) in the mixed ANOVA calculated on
the whole sample and the per protocol subsample for lnSDNN, lnRMSSD, lnTP, lnLF and lnHF; Table
S5 Main effects of group (true vs. sham HRV-biofeedback) and training (pre-mid-post) and the inter-
action effect (group*training) in the mixed ANOVA calculated on the whole sample, the functional
clusters, and the per protocol subsample for lnSDNN, lnRMSSD, lnTP, lnLF and lnHF (for group:
dfs = (1,55), dfpp = (1,47), for training and training*group: dfs = (2,110), dfpp = (2,94)); Table
S6 Post-hoc analysis of the main effects of group (true vs. sham HRV-biofeedback) and training
(pre-mid-post), and the interaction effect (group*training) in the mixed-models analysis of variance
(ANOVA) calculated on the whole sample and the per protocol subsample for lnSDNN, lnRMSSD,
lnTP, lnLF and lnHF.
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